首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99110篇
  免费   8259篇
  国内免费   4846篇
电工技术   4975篇
技术理论   8篇
综合类   8498篇
化学工业   20917篇
金属工艺   1752篇
机械仪表   2273篇
建筑科学   13862篇
矿业工程   5212篇
能源动力   6256篇
轻工业   5574篇
水利工程   18873篇
石油天然气   8628篇
武器工业   213篇
无线电   1338篇
一般工业技术   4349篇
冶金工业   3489篇
原子能技术   3615篇
自动化技术   2383篇
  2024年   284篇
  2023年   1071篇
  2022年   2100篇
  2021年   2612篇
  2020年   2928篇
  2019年   2470篇
  2018年   2398篇
  2017年   2923篇
  2016年   3278篇
  2015年   3188篇
  2014年   6028篇
  2013年   6558篇
  2012年   7249篇
  2011年   7392篇
  2010年   5512篇
  2009年   5755篇
  2008年   5066篇
  2007年   6599篇
  2006年   6158篇
  2005年   5685篇
  2004年   4443篇
  2003年   4132篇
  2002年   3599篇
  2001年   2936篇
  2000年   2411篇
  1999年   1925篇
  1998年   1408篇
  1997年   1157篇
  1996年   899篇
  1995年   834篇
  1994年   621篇
  1993年   486篇
  1992年   379篇
  1991年   341篇
  1990年   254篇
  1989年   239篇
  1988年   152篇
  1987年   179篇
  1986年   119篇
  1985年   123篇
  1984年   106篇
  1983年   63篇
  1982年   33篇
  1981年   15篇
  1980年   20篇
  1979年   17篇
  1977年   8篇
  1976年   5篇
  1959年   33篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
The slight-alkalization of generator internal cooling water (GICW) is widely used to inhibit the corrosion of hollow copper conductor and thereby ensure the safe operation of the generator. CO2 inleakage is increasingly identified as a potential security risk for GICW system. In this paper, the influence of CO2 inleakage on the slight-alkalization of GICW was theoretically discussed. Based on the equilibriums of the CO2-NaOH-H2O system, CO2 inleakage saturation was derived to quantify the amount of the dissolved CO2 in GICW. This parameter can be directly calculated with the measured conductivity and the [Na+] of GICW. The influence of CO2 inleakage on the slight-alkalization conditioning of GICW and the measurement of its water quality parameters were then analyzed. The more severe the inleakage, the narrower the water quality operation ranges of GICW, resulting in the more difficult the slight-alkalization conditioning of GICW. The temperature calibrations of the conductivity and the pH value of GICW show non-linear correlations with the amount of CO2 inleakage and the NaOH dosage. This study provides insights into the influence of CO2 inleakage on the slight-alkalization of GICW, which can serve as the theoretical basis for the actual slight-alkalization when CO2 inleakage occurs.  相似文献   
22.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
23.
In this study, a multi-tubular thermally coupled packed bed reactor in which simultaneous production of ammonia and methyl ethyl ketone (MEK) takes place is simulated. The simulation results are presented in two co-current and counter-current flow modes. Based on this new configuration, the released heat from the ammonia synthesis reaction as an extremely exothermic reaction in the inner tube is employed to supply the required heat for the endothermic 2-butanol dehydrogenation reaction in the outer tube. On the other hand, MEK and hydrogen are produced by the dehydrogenation reaction of 2-butanol in the endothermic side, and the produced hydrogen is used to supply a part of the ammonia synthesis feed in the exothermic side. Thus, 30.72% and 31.88% of the required hydrogen for the ammonia synthesis are provided by the dehydrogenation reaction in the co-current and counter-current configurations, respectively. Also, according to the thermal coupling, the required cooler and furnace for the ammonia synthesis and 2-butanol dehydrogenation conventional plants are eliminated, respectively. As a result, operational costs, energy consumption and furnace emissions are considerably decreased. Finally, a sensitivity analysis and optimization are applied to study the effect of the main process parameters variation on the system performance and obtain the minimum hydrogen make-up flow rate, respectively.  相似文献   
24.
A 2D computational fluid dynamics (Eulerian–Eulerian) multiphase flow model coupled with a population balance model (CFD-PBM) was implemented to investigate the fluidization structure in terms of entrance region in an industrial-scale gas phase fluidized bed reactor. The simulation results were compared with the industrial data, and good agreement was observed. Two cases including perforated distributor and complete sparger were applied to examine the flow structure through the bed. The parametric sensitivity analysis of time step, number of node, drag coefficient, and specularity coefficient was carried out. It was found that the results were more sensitive to the drag model. The results showed that the entrance configuration has significant effect on the flow structure. While the dead zones are created in both corners of the distributors, the perforated distributor generates more startup bubbles, heterogeneous flow field, and better gas–solid interaction above the entrance region due to jet formation.  相似文献   
25.
26.
27.
Ni2P nanoparticles and CdS nanorods were grew together on a mesoporous g-C3N4 through a facile in-situ solvothermal approach. Under visible light (λ > 400 nm), the as-prepared ternary PCN–CdS-5% Ni2P composite displays a high H2 evolution rate with 2905.86 μmol g?1 h?1, which is about 14, 18 and 279 times that of PCN–CdS, PCN–Ni2P and PCN, respectively. The enhanced photocatalytic activity is mainly attributed to the improved separation efficiency of the photocarriers by the type II PCN–CdS heterojunction and the effective extraction of photogenerated electrons by Ni2P. Meanwhile, Ni2P acts as co-catalyst to provide the photocatalytic active site for hydrogen reduction. In addition, PCN–CdS-5% Ni2P composite exerts good stability in 12-h cycles.  相似文献   
28.
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.  相似文献   
29.
Dynamic responses of the geosynthetic-encased stone column (GESC) supported embankment under traffic loads have become a hot topic. This study investigates the responses of GESC improved ground under vertical cyclic loading. A series of laboratory tests in a designed model test tank have been carried out with different loading parameters (varied loading amplitudes and frequencies), different column dimensions (varied encasement lengths and column diameters). In the tests, the soil-column stress distribution, accumulated settlement of loading plate, excess pore water pressure in the surrounding soil and lateral bulging of the stone column are monitored. Experimental results indicate that the vertical stress on the stone column increases with the increment of encasement length, and decreases with the increment of column diameter, loading amplitude and loading frequency. The increasing stress on the surrounding soil leads to a greater accumulated settlement of the loading plate and excess pore water pressure, while the increasing stress on the column leads to larger lateral bulging of the column. Excess pore water pressure dissipates effectively through vertical and horizontal drainage channels provided by the stone column and the sand bed. The geosynthetic encasement prevents the clay from obstructing the drainage channel by filtration and guarantees the drainage effect.  相似文献   
30.
为检查工程质量,查找输水系统可能存在的问题并消除隐患,保障电站安全运行,福建仙游抽水蓄能电站在投产发电前,要对输水发电系统进行充水试验与放空排水试验,在试验过程中监测输水系统的应力、应变与渗漏水情况。本文以尾水系统为例,介绍了试验所应具备的工程条件、工作程序及技术要求、试验成果分析和存在问题处理等。试验表明,仙游抽水蓄能电站尾水系统设计合理,施工质量优良,结构可靠,可供同类工程参考与借鉴。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号