首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47814篇
  免费   5145篇
  国内免费   3304篇
电工技术   3305篇
综合类   4219篇
化学工业   7402篇
金属工艺   2301篇
机械仪表   2247篇
建筑科学   4933篇
矿业工程   1852篇
能源动力   1785篇
轻工业   3671篇
水利工程   1434篇
石油天然气   2588篇
武器工业   482篇
无线电   6221篇
一般工业技术   7724篇
冶金工业   2196篇
原子能技术   1209篇
自动化技术   2694篇
  2024年   193篇
  2023年   815篇
  2022年   1389篇
  2021年   1684篇
  2020年   1707篇
  2019年   1589篇
  2018年   1407篇
  2017年   1805篇
  2016年   1848篇
  2015年   1883篇
  2014年   2765篇
  2013年   2982篇
  2012年   3242篇
  2011年   3565篇
  2010年   2635篇
  2009年   2767篇
  2008年   2594篇
  2007年   3063篇
  2006年   2792篇
  2005年   2286篇
  2004年   2019篇
  2003年   1776篇
  2002年   1510篇
  2001年   1192篇
  2000年   1156篇
  1999年   893篇
  1998年   721篇
  1997年   694篇
  1996年   585篇
  1995年   483篇
  1994年   422篇
  1993年   348篇
  1992年   273篇
  1991年   254篇
  1990年   198篇
  1989年   156篇
  1988年   115篇
  1987年   79篇
  1986年   56篇
  1985年   54篇
  1984年   55篇
  1983年   36篇
  1982年   45篇
  1981年   14篇
  1980年   23篇
  1979年   25篇
  1965年   5篇
  1963年   5篇
  1959年   11篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
12.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
13.
《工程爆破》2022,(1):64-69
爆破工程具有周期短、自成完整体系、技术管理严格的特点,但在费用管理上需进一步规范与整顿。本文阐述了工程费用的构成、调整及爆破工程费用的计算方法。  相似文献   
14.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
15.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
16.
17.
N-K2Ti4O9/MIL-101 composites were successfully synthesized by a facile hydrothermal method, and were characterized by powder X-ray diffraction, UV–vis diffuse reflectance spectroscopy, the valence band X-ray photoelectron spectroscopy, field emission transmission electron microscopy, photoluminescence emission spectra, N2 adsorption–desorption and thermogravimetric analysis. Photocatalytic activities of N-K2Ti4O9, MIL-101 and the composites were investigated by the degradation of Rhodamine B (RhB) under visible light irradiation. The results show that the composites exhibit higher photocatalytic activity as compared with the pure materials. The synergistically enhanced photocatalytic activity of the composites is due to big adsorption capacity of MIL-101 and high separation efficiency of photogenerated electron-hole pairs through interfaces between N-K2Ti4O9 and MIL-101.  相似文献   
18.
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII−GdIII distances measured by double electron–electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII−GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.  相似文献   
19.
Protective coatings from diethylphosphatoethyltriethoxysilane (DEPETS) have been deposited on different polymer substrates in a plasma discharge operated at atmospheric pressure. Plasma polymer chemistry and structure were characterized by means of Fourier transform infrared spectroscopy (FTIR), laser desorption ionization-mass spectrometry (LDI-MS), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). A chemical structure of the plasma polymer has been proposed based on the coating molecular characterization. Coatings were deposited on polycarbonate (PC) and polyamide 6 (PA6) substrates. The flame retardant properties of coated substrate samples were assessed using cone calorimetry and compared to those of bare substrates. A significant increase in the time to ignition (TTI), up to +143%, was recorded after coating deposition due to the formation of a high-performance barrier layer at the surface of both polymer substrates.  相似文献   
20.
Bulk and surface properties of proton stability and transportation in Y and Nd co-doped BaCeO3 (BCYN), especially the effect of Nd segregation, were investigated by first-principles calculations. Since the structure of doped BaCeO3 at the operating temperature of proton-conducting has been unclear for a long time, we have summarized the latest experimental results and calculated the structure of the asymmetric BCYN for the first time. The results show that compared with Y, Nd doping promotes oxygen vacancy formation, however reduces proton stability. Our calculation can also provide a possible explanation for the formation of space charge layer at the grain boundary of doped BaCeO3 in experiment. Unlike the stable Y in BCYN, Nd is calculated to be easily segregated, which can facilitate both proton hydration and proton transportation near the surface. Moreover, Nd segregation at the grain boundary is predicted to be beneficial for proton transportation between grains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号