首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67795篇
  免费   7674篇
  国内免费   4827篇
电工技术   5748篇
技术理论   4篇
综合类   8519篇
化学工业   10632篇
金属工艺   2648篇
机械仪表   5087篇
建筑科学   3529篇
矿业工程   1849篇
能源动力   5538篇
轻工业   1697篇
水利工程   5643篇
石油天然气   5061篇
武器工业   827篇
无线电   3007篇
一般工业技术   6923篇
冶金工业   3136篇
原子能技术   1711篇
自动化技术   8737篇
  2024年   254篇
  2023年   887篇
  2022年   1648篇
  2021年   1941篇
  2020年   2095篇
  2019年   1923篇
  2018年   1835篇
  2017年   2225篇
  2016年   2497篇
  2015年   2521篇
  2014年   3576篇
  2013年   4507篇
  2012年   4527篇
  2011年   5102篇
  2010年   3657篇
  2009年   3896篇
  2008年   3723篇
  2007年   4333篇
  2006年   4105篇
  2005年   3626篇
  2004年   3081篇
  2003年   2768篇
  2002年   2276篇
  2001年   1894篇
  2000年   1704篇
  1999年   1523篇
  1998年   1280篇
  1997年   1115篇
  1996年   1036篇
  1995年   963篇
  1994年   788篇
  1993年   634篇
  1992年   539篇
  1991年   397篇
  1990年   362篇
  1989年   284篇
  1988年   207篇
  1987年   135篇
  1986年   97篇
  1985年   62篇
  1984年   66篇
  1983年   44篇
  1982年   33篇
  1981年   24篇
  1980年   10篇
  1979年   23篇
  1978年   6篇
  1974年   5篇
  1959年   24篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
不同折流板结构螺旋折流板换热器传热性能的比较(英文)   总被引:1,自引:0,他引:1  
Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers, the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as wel as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20° (20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overal heat transfer coefficient K, shel-side heat transfer coefficient ho and shel-side average comprehensive index ho/Δpo.  相似文献   
22.
A steelmaking-continuous casting (SCC) scheduling problem is an example of complex hybrid flow shop scheduling problem (HFSSP) with a strong industrial background. This paper investigates the SCC scheduling problem that involves controllable processing times (CPT) with multiple objectives concerning the total waiting time, earliness/tardiness and adjusting cost. The SCC scheduling problem with CPT is seldom discussed in the existing literature. This study is motivated by the practical situation of a large integrated steel company in which the just-in-time (JIT) and cost-cutting production strategy have become a significant concern. To address this complex HFSSP, the scheduling problem is decomposed into two subproblems: a parallel machine scheduling problem (PMSP) in the last stage and an HFSSP in the upstream stages. First, a hybrid differential evolution (HDE) algorithm combined with a variable neighborhood decomposition search (VNDS) is proposed for the former subproblem. Second, an iterative backward list scheduling (IBLS) algorithm is presented to solve the latter subproblem. The effectiveness of this bi-layer optimization approach is verified by computational experiments on well-designed and real-world scheduling instances. This study provides a new perspective on modeling and solving practical SCC scheduling problems.  相似文献   
23.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
24.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
25.
In the first part of this paper, we investigate the use of Hessenberg-based methods for solving the Sylvester matrix equation AX+XB=C. To achieve this goal, the Sylvester form of the global generalized Hessenberg process is presented. Using this process, different methods based on a Petrov–Galerkin or on a minimal norm condition are derived. In the second part, we focus on the SGl-CMRH method which is based on the Sylvester form of the Hessenberg process with pivoting strategy combined with a minimal norm condition. In order to accelerate the SGl-CMRH method, a preconditioned framework of this method is also considered. It includes both fixed and flexible variants of the SGl-CMRH method. Moreover, the connection between the flexible preconditioned SGl-CMRH method and the fixed one is studied and some upper bounds for the residual norm are obtained. In particular, application of the obtained theoretical results is investigated for the special case of solving linear systems of equations with several right-hand sides. Finally, some numerical experiments are given in order to evaluate the effectiveness of the proposed methods.  相似文献   
26.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
27.
This paper discusses the capability of Guo et al.'s (2021) equations to determine the discharge of radial gates under submerged flow conditions. It was concluded that Guo et al.'s (2021) equations are associated with error reduction compared to the Incomplete Self-Similarity (ISS) theory and the calibration method. However, it does not have a significant advantage over Energy-Momentum (E-M) approach. Employing E-M principles, new equations were proposed to determine the discharge of radial gates, which has some advantages compared to Guo et al. (2021), such as (1) error reduction under partially and fully submerged flow conditions, (2) least dependence on the empirical constants, (3) uniformity of form over the entire submerged condition, and (4) no need to classify the submerged flow. Field calibration showed that the proposed equations in the present study for a single gate predict the discharge of parallel radial gates with a mean absolute error of less than 4.5% subject to the submerged operation of all open gates.  相似文献   
28.
We deal with the mathematical model of the incremental degradation of the internal coating (e.g. a polymeric material) of a metallic pipe in which a fluid flows relatively fast. The fluid drags solid impurities so that longitudinal scratches, inaccessible to any direct inspection procedure, are produced on the coating. Time evolution of this kind of defects can be reconstructed from the knowledge of a sequence of temperature maps of the external surface. The time-varying orthogonal section of this damaged interface is determined as a function of time and polar angle through the identification of a suitable effective heat transfer coefficient by means of Thin Plate Approximation.  相似文献   
29.
Enhanced gravity concentrators such as Knelson concentrator (KC) are extensively used in the mineral processing industry. The complexities of KC bowl geometry and variation of feed characteristics have forced process engineers to design empirically new units using laboratory and pilot-scale Knelson concentrators. However, numerical modelling methods such as computational fluid dynamics (CFD) and discrete element method (DEM) provide a better insight of flow behaviour of fluid and particulate solid phases inside these processing units. This article reports findings of CFD simulations for single-phase water flow inside the laboratory KC. An available standard 7.5-cm laboratory KC bowl was numerically simulated using realisable k-ε turbulence model to resolve the turbulence dispersion of existing transitional flow regime. The effects of relative centrifugal force (RCF) intensity and bed fluidisation water flow rate on the water velocity and pressure distributions were studied. Simulations confirmed the swirling flow pattern governing inside the bowl. The results revealed that the impact of RCF intensity on the water field values is greater than that of bed fluidisation water flow rate. Both velocity and pressure variations inside the bowl rings followed a linear trend.  相似文献   
30.
PIV (Particle Image Velocimetry) technique for flow field measurement has achieved popular self-identify through over ten years development, and its application range is becoming wider and wider. PIV post-processing techniques have a great influence on the success of particle-fluid two-phase flow field measurement and thus become a hot and difficult topic. In the present study, a Phase Respective Identification Algorithm (PRIA) is introduced to separate low-density solid particles or bubbles and high-density tracer particles from the PIV image of particle-fluid two-phase flow. PTV (Particle Tracking Velocimetry) technique is employed to calculate the velocity fields of low-density solid particles or bubbles. For the velocity fields of high-density solid particles or bubble phase and continuous phase traced by high-density smaller particles, based on the thought of wavelet transform and multi-resolution analysis and the theory of cross-correlation of image, a delaminated processing algorithm (MCCWM) is presented to conquer the limitation of conventional Fourier transform. The algorithm is firstly testified on synthetic two-phase flows, such as uniform steady flow, shearing flow and rotating flow, and the computational results from the simulated particle images are in reasonable agreement with the given simulated data. The algorithm is then applied to images of actual bubble-liquid two-phase flow and jet flow, and the results also confirmed that the algorithm proposed in the present study has good performance and reliability for post-processing PIV images of particle-fluid two-phase flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号