首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243591篇
  免费   22281篇
  国内免费   10780篇
电工技术   14512篇
技术理论   31篇
综合类   23722篇
化学工业   35929篇
金属工艺   10098篇
机械仪表   12062篇
建筑科学   31305篇
矿业工程   15446篇
能源动力   8983篇
轻工业   19419篇
水利工程   10868篇
石油天然气   13381篇
武器工业   3359篇
无线电   15217篇
一般工业技术   19328篇
冶金工业   13093篇
原子能技术   2238篇
自动化技术   27661篇
  2024年   1127篇
  2023年   3365篇
  2022年   6201篇
  2021年   8221篇
  2020年   8026篇
  2019年   6130篇
  2018年   5770篇
  2017年   7234篇
  2016年   8684篇
  2015年   9306篇
  2014年   16485篇
  2013年   14917篇
  2012年   17725篇
  2011年   19228篇
  2010年   14128篇
  2009年   14341篇
  2008年   13083篇
  2007年   15876篇
  2006年   14577篇
  2005年   12716篇
  2004年   10530篇
  2003年   9262篇
  2002年   7547篇
  2001年   6177篇
  2000年   5305篇
  1999年   4196篇
  1998年   3034篇
  1997年   2636篇
  1996年   2163篇
  1995年   1798篇
  1994年   1526篇
  1993年   1095篇
  1992年   866篇
  1991年   631篇
  1990年   534篇
  1989年   488篇
  1988年   288篇
  1987年   227篇
  1986年   188篇
  1985年   212篇
  1984年   152篇
  1983年   126篇
  1982年   76篇
  1981年   78篇
  1980年   90篇
  1979年   43篇
  1978年   22篇
  1977年   22篇
  1959年   27篇
  1951年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Multi‐view reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D reconstruction of dynamic scenes is a key component for a large variety of applications, ranging from special effects to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces which robustly and efficiently reconstructs dynamic scenes captured by a calibrated set of hybrid color+depth cameras. Our reconstruction provides spatio‐temporal consistency and seamlessly fuses color and geometric information. We illustrate our approach on a variety of real sequences and demonstrate that it favorably compares to state‐of‐the‐art methods.  相似文献   
992.
Capturing exposure sequences to compute high dynamic range (HDR) images causes motion blur in cases of camera movement. This also applies to light‐field cameras: frames rendered from multiple blurred HDR light‐field perspectives are also blurred. While the recording times of exposure sequences cannot be reduced for a single‐sensor camera, we demonstrate how this can be achieved for a camera array. Thus, we decrease capturing time and reduce motion blur for HDR light‐field video recording. Applying a spatio‐temporal exposure pattern while capturing frames with a camera array reduces the overall recording time and enables the estimation of camera movement within one light‐field video frame. By estimating depth maps and local point spread functions (PSFs) from multiple perspectives with the same exposure, regional motion deblurring can be supported. Missing exposures at various perspectives are then interpolated.  相似文献   
993.
994.
Linear models are commonly used to identify trends in data. While it is an easy task to build linear models using pre‐selected variables, it is challenging to select the best variables from a large number of alternatives. Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In this work, we present an integrated framework with visual representations that allows the user to incrementally build and verify models in three model spaces that support local pattern discovery and summarization: model complementarity, model diversity, and model representivity. Visual representations are designed and implemented for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that perform well in modeling different subsets of data points. They also support the isolation of local models based on a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local trends and the local trends that share similar directions in the model space. A case study on financial risk analysis is discussed, followed by a user study.  相似文献   
995.
There is increasing evidence that user characteristics can have a significant impact on visualization effectiveness, suggesting that visualizations could be designed to better fit each user's specific needs. Most studies to date, however, have looked at static visualizations. Studies considering interactive visualizations have only looked at a limited number of user characteristics, and consider either low‐level tasks (e.g., value retrieval), or high‐level tasks (in particular: discovery), but not both. This paper contributes to this line of work by looking at the impact of a large set of user characteristics on user performance with interactive visualizations, for both low and high‐level tasks. We focus on interactive visualizations that support decision making, exemplified by a visualization known as Value Charts. We include in the study two versions of ValueCharts that differ in terms of layout, to ascertain whether layout mediates the impact of individual differences and could be considered as a form of personalization. Our key findings are that (i) performance with low and high‐level tasks is affected by different user characteristics, and (ii) users with low visual working memory perform better with a horizontal layout. We discuss how these findings can inform the provision of personalized support to visualization processing.  相似文献   
996.
An important part of network analysis is understanding community structures like topological clusters and attribute‐based groups. Standard approaches for showing communities using colour, shape, rectangular bounding boxes, convex hulls or force‐directed layout algorithms remain valuable, however our Group‐in‐a‐Box meta‐layouts add a fresh strategy for presenting community membership, internal structure and inter‐cluster relationships. This paper extends the basic Group‐in‐a‐Box meta‐layout, which uses a Treemap substrate of rectangular regions whose size is proportional to community size. When there are numerous inter‐community relationships, the proposed extensions help users view them more clearly: (1) the Croissant–Doughnut meta‐layout applies empirically determined rules for box arrangement to improve space utilization while still showing inter‐community relationships, and (2) the Force‐Directed layout arranges community boxes based on their aggregate ties at the cost of additional space. Our free and open source reference implementation in NodeXL includes heuristics to choose what we have found to be the preferable Group‐in‐a‐Box meta‐layout to show networks with varying numbers or sizes of communities. Case study examples, a pilot comparative user preference study (nine participants), and a readability measure‐based evaluation of 309 Twitter networks demonstrate the utility of the proposed meta‐layouts.  相似文献   
997.
Molecular visualization is often challenged with rendering of large molecular structures in real time. We introduce a novel approach that enables us to show even large protein complexes. Our method is based on the level‐of‐detail concept, where we exploit three different abstractions combined in one visualization. Firstly, molecular surface abstraction exploits three different surfaces, solvent‐excluded surface (SES), Gaussian kernels and van der Waals spheres, combined as one surface by linear interpolation. Secondly, we introduce three shading abstraction levels and a method for creating seamless transitions between these representations. The SES representation with full shading and added contours stands in focus while on the other side a sphere representation of a cluster of atoms with constant shading and without contours provide the context. Thirdly, we propose a hierarchical abstraction based on a set of clusters formed on molecular atoms. All three abstraction models are driven by one importance function classifying the scene into the near‐, mid‐ and far‐field. Moreover, we introduce a methodology to render the entire molecule directly using the A‐buffer technique, which further improves the performance. The rendering performance is evaluated on series of molecules of varying atom counts.  相似文献   
998.
We address the problem of robust and efficient treatment of element collapse and inversion in corotational FEM simulations of deformable objects in two and three dimensions, and show that existing degeneration treatment methods have previously unreported flaws that seriously threaten robustness and physical plausibility in interactive applications. We propose a new method that avoids such flaws, yields faster and smoother degeneration recovery and extends the range of well‐behaved degenerate configurations without adding significant complexity or computational cost to standard explicit and quasi‐implicit solvers.  相似文献   
999.
Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically‐based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach.  相似文献   
1000.
Recent years have seen increasing attention and significant progress in many‐light rendering, a class of methods for efficient computation of global illumination. The many‐light formulation offers a unified mathematical framework for the problem reducing the full lighting transport simulation to the calculation of the direct illumination from many virtual light sources. These methods are unrivaled in their scalability: they are able to produce plausible images in a fraction of a second but also converge to the full solution over time. In this state‐of‐the‐art report, we give an easy‐to‐follow, introductory tutorial of the many‐light theory; provide a comprehensive, unified survey of the topic with a comparison of the main algorithms; discuss limitations regarding materials and light transport phenomena and present a vision to motivate and guide future research. We will cover both the fundamental concepts as well as improvements, extensions and applications of many‐light rendering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号