首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57903篇
  免费   7442篇
  国内免费   4296篇
电工技术   8321篇
技术理论   3篇
综合类   5608篇
化学工业   9607篇
金属工艺   2431篇
机械仪表   4507篇
建筑科学   2923篇
矿业工程   1861篇
能源动力   5503篇
轻工业   1176篇
水利工程   5397篇
石油天然气   4135篇
武器工业   689篇
无线电   2531篇
一般工业技术   4942篇
冶金工业   2836篇
原子能技术   1563篇
自动化技术   5608篇
  2024年   255篇
  2023年   885篇
  2022年   1601篇
  2021年   1946篇
  2020年   2067篇
  2019年   1764篇
  2018年   1632篇
  2017年   2106篇
  2016年   2309篇
  2015年   2408篇
  2014年   3319篇
  2013年   3915篇
  2012年   3922篇
  2011年   4535篇
  2010年   3101篇
  2009年   3436篇
  2008年   3205篇
  2007年   3771篇
  2006年   3570篇
  2005年   3136篇
  2004年   2586篇
  2003年   2311篇
  2002年   1863篇
  2001年   1605篇
  2000年   1386篇
  1999年   1166篇
  1998年   959篇
  1997年   815篇
  1996年   781篇
  1995年   688篇
  1994年   564篇
  1993年   444篇
  1992年   374篇
  1991年   229篇
  1990年   242篇
  1989年   191篇
  1988年   136篇
  1987年   96篇
  1986年   66篇
  1985年   41篇
  1984年   50篇
  1983年   38篇
  1982年   23篇
  1981年   11篇
  1980年   10篇
  1979年   16篇
  1978年   5篇
  1977年   5篇
  1959年   27篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
A steelmaking-continuous casting (SCC) scheduling problem is an example of complex hybrid flow shop scheduling problem (HFSSP) with a strong industrial background. This paper investigates the SCC scheduling problem that involves controllable processing times (CPT) with multiple objectives concerning the total waiting time, earliness/tardiness and adjusting cost. The SCC scheduling problem with CPT is seldom discussed in the existing literature. This study is motivated by the practical situation of a large integrated steel company in which the just-in-time (JIT) and cost-cutting production strategy have become a significant concern. To address this complex HFSSP, the scheduling problem is decomposed into two subproblems: a parallel machine scheduling problem (PMSP) in the last stage and an HFSSP in the upstream stages. First, a hybrid differential evolution (HDE) algorithm combined with a variable neighborhood decomposition search (VNDS) is proposed for the former subproblem. Second, an iterative backward list scheduling (IBLS) algorithm is presented to solve the latter subproblem. The effectiveness of this bi-layer optimization approach is verified by computational experiments on well-designed and real-world scheduling instances. This study provides a new perspective on modeling and solving practical SCC scheduling problems.  相似文献   
22.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
23.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
24.
This paper discusses the capability of Guo et al.'s (2021) equations to determine the discharge of radial gates under submerged flow conditions. It was concluded that Guo et al.'s (2021) equations are associated with error reduction compared to the Incomplete Self-Similarity (ISS) theory and the calibration method. However, it does not have a significant advantage over Energy-Momentum (E-M) approach. Employing E-M principles, new equations were proposed to determine the discharge of radial gates, which has some advantages compared to Guo et al. (2021), such as (1) error reduction under partially and fully submerged flow conditions, (2) least dependence on the empirical constants, (3) uniformity of form over the entire submerged condition, and (4) no need to classify the submerged flow. Field calibration showed that the proposed equations in the present study for a single gate predict the discharge of parallel radial gates with a mean absolute error of less than 4.5% subject to the submerged operation of all open gates.  相似文献   
25.
Enhanced gravity concentrators such as Knelson concentrator (KC) are extensively used in the mineral processing industry. The complexities of KC bowl geometry and variation of feed characteristics have forced process engineers to design empirically new units using laboratory and pilot-scale Knelson concentrators. However, numerical modelling methods such as computational fluid dynamics (CFD) and discrete element method (DEM) provide a better insight of flow behaviour of fluid and particulate solid phases inside these processing units. This article reports findings of CFD simulations for single-phase water flow inside the laboratory KC. An available standard 7.5-cm laboratory KC bowl was numerically simulated using realisable k-ε turbulence model to resolve the turbulence dispersion of existing transitional flow regime. The effects of relative centrifugal force (RCF) intensity and bed fluidisation water flow rate on the water velocity and pressure distributions were studied. Simulations confirmed the swirling flow pattern governing inside the bowl. The results revealed that the impact of RCF intensity on the water field values is greater than that of bed fluidisation water flow rate. Both velocity and pressure variations inside the bowl rings followed a linear trend.  相似文献   
26.
Frequency band selection (FBS) in rotating machinery fault diagnosis aims to recognize frequency band location including a fault transient out of a full band spectrum, and thus fault diagnosis can suppress noise influence from other frequency components. Impulsiveness and cyclostationarity have been recently recognized as two distinctive signatures of a transient. Thus, many studies have focused on developing quantification metrics of the two signatures and using them as indicators to guide FBS. However, most previous studies almost ignore another aspect of FBS, i.e. health reference, which significantly affect FBS performance. To address this issue, this paper investigates importance of a health reference and recognize it as the third critical aspect in FBS. With help of the health reference, the frequency band where the fault transient exists could be located. A novel approach based on classification is proposed to integrate all three aspects (impulsiveness, cyclostationarity, and health reference) for FBS. Classification accuracy is developed as a novel indicator to select the most sensitive frequency band for rotating machinery fault diagnosis. The proposed method (coined by accugram) has been validated on benchmark and experiment datasets. Comparison results show its effectiveness and robustness over conventional envelope analysis, the kurtogram, and the infogram.  相似文献   
27.
PIV (Particle Image Velocimetry) technique for flow field measurement has achieved popular self-identify through over ten years development, and its application range is becoming wider and wider. PIV post-processing techniques have a great influence on the success of particle-fluid two-phase flow field measurement and thus become a hot and difficult topic. In the present study, a Phase Respective Identification Algorithm (PRIA) is introduced to separate low-density solid particles or bubbles and high-density tracer particles from the PIV image of particle-fluid two-phase flow. PTV (Particle Tracking Velocimetry) technique is employed to calculate the velocity fields of low-density solid particles or bubbles. For the velocity fields of high-density solid particles or bubble phase and continuous phase traced by high-density smaller particles, based on the thought of wavelet transform and multi-resolution analysis and the theory of cross-correlation of image, a delaminated processing algorithm (MCCWM) is presented to conquer the limitation of conventional Fourier transform. The algorithm is firstly testified on synthetic two-phase flows, such as uniform steady flow, shearing flow and rotating flow, and the computational results from the simulated particle images are in reasonable agreement with the given simulated data. The algorithm is then applied to images of actual bubble-liquid two-phase flow and jet flow, and the results also confirmed that the algorithm proposed in the present study has good performance and reliability for post-processing PIV images of particle-fluid two-phase flow.  相似文献   
28.
The chemical method has proved to be the most effective mitigating method of wax deposition in petroleum system as it deals with the root cause of wax formation. Most of the commercial chemicals in the industry are very expensive and toxic. This paper aims the use of biodiesel based additives for improving the rheological behavior and pour points of waxy crude from Nigeria field. The biodiesels derived additives gave better performance than the commercial chemical and the seed oils as greatly improvement in rheology and pour point values of the waxy crude were observed  相似文献   
29.
30.
The simultaneous flow of gas, oil, and water forms various flow patterns due to the complex interfacial relationships. Three-phase flow patterns are classified as the gas-liquid and liquid-liquid flow patterns. Pressure drop, void fraction, liquid holdup, and phase distribution are important characteristics of the three-phase flow. These characteristics are generally associated with the three-phase flow patterns. Hence, the knowledge about flow patterns can help to predict the overall behavior of the three-phase flow. Studies have been conducted to identify three-phase flow pattern and their characteristics at various superficial velocities of gas, oil, and water. The major purpose of the studies is to gather information about the three-phase co-current flow and use it for improvement of the efficiency of the flow systems. Therefore, the accuracy of the measurement technique is critical. Several types of flow pattern identification and measurement techniques have been developed to improve accuracy and provide high-quality results. In this article, classical and advanced techniques used for the three-phase flow identification and measurement have been reviewed. The survey will help the researchers working in the area of multiphase flow to choose the right technique based on the objectives of the studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号