首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16204篇
  免费   1861篇
  国内免费   520篇
电工技术   1068篇
综合类   1013篇
化学工业   1326篇
金属工艺   205篇
机械仪表   386篇
建筑科学   3022篇
矿业工程   99篇
能源动力   4168篇
轻工业   161篇
水利工程   221篇
石油天然气   67篇
武器工业   14篇
无线电   3550篇
一般工业技术   2684篇
冶金工业   164篇
原子能技术   51篇
自动化技术   386篇
  2024年   36篇
  2023年   404篇
  2022年   394篇
  2021年   558篇
  2020年   609篇
  2019年   597篇
  2018年   510篇
  2017年   786篇
  2016年   892篇
  2015年   835篇
  2014年   1278篇
  2013年   1080篇
  2012年   1274篇
  2011年   1668篇
  2010年   1068篇
  2009年   985篇
  2008年   872篇
  2007年   907篇
  2006年   778篇
  2005年   543篇
  2004年   416篇
  2003年   371篇
  2002年   296篇
  2001年   251篇
  2000年   207篇
  1999年   151篇
  1998年   185篇
  1997年   107篇
  1996年   102篇
  1995年   53篇
  1994年   81篇
  1993年   69篇
  1992年   38篇
  1991年   19篇
  1990年   22篇
  1989年   12篇
  1988年   14篇
  1987年   15篇
  1986年   15篇
  1985年   11篇
  1984年   17篇
  1983年   6篇
  1982年   15篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1978年   7篇
  1977年   6篇
  1975年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 282 毫秒
151.
太阳能作为一种可再生、无污染的能源,已经得到了较为广泛的应用;但其利用率低、成本过高等因素仍然制约着太阳能资源的进一步开发和利用,因此太阳能智能采光的研究非常有意义。本文主要设计并实现了智能采光方案,分析并验证了实时太阳方位的算法,利用Fusion系列单片模数混合的FPGA开发系统,实现了模数转换以及太阳方位计算和相应的蓄电管理。  相似文献   
152.
风/光互补发电场优化设计模型   总被引:1,自引:0,他引:1  
针对复杂的风/光互补发电场优化设计问题,首次提出了一种新的风/光互补发电场优化设计模型.在分析了现有研究的基础上,给出了适合于风/光互补发电场部件发电量计算的计算模型,归纳了设计时各部件的数量和类型选择的约束关系,最后综合给出了一种新的适合于风/光互补发电场优化设计的模型.  相似文献   
153.
嫁娶屋是佛山古镇在商贸大都会背景和市井商业文化的特殊条件下产生的典型民俗文物,是广府民俗文化中一个特殊的亮点。本文在首次考察佛山文物的基础上,尝试从其建筑艺术与产生缘由两个方面进行初步探讨。  相似文献   
154.
The rational design of economic and high-performance electrocatalytic water-splitting systems is of great significance for energy and environmental sustainability. Developing a sustainable energy conversion-assisted electrocatalytic process provides a promising novel approach to effectively boost its performance. Herein, a self-sustained water-splitting system originated from the heterostructure of perovskite oxide with 2D Ti3C2Tx MXene on Ni foam (La1-xSrxCoO3/Ti3C2Tx MXene/Ni) that shows high activity for solar-powered water evaporation and simultaneous electrocatalytic water splitting is presented. The all-in-one interfacial electrocatalyst exhibits highly improved oxygen evolution reaction (OER) performance with a low overpotential of 279 mV at 10 mA cm−2 and a small Tafel slope of 74.3 mV dec−1, superior to previously reported perovskite oxide-based electrocatalysts. Density functional theory calculations reveal that the integration of La0.9Sr0.1CoO3 with Ti3C2Tx MXene can lower the energy barrier for the electron transfer and decrease the OER overpotential, while COMSOL simulations unveil that interfacial solar evaporation could induce OH enrichment near the catalyst surfaces and enhance the convection flow above the catalysts to remove the generated gas, remarkably accelerating the kinetics of electrocatalytic water splitting.  相似文献   
155.
Silica aerogels, a type of porous material featuring extra low density and thermal conductivity, have drawn increasing interest from both academia and industry owing to their excellent thermal insulation performance. However, thermal insulation is always the single consideration when silica aerogels are used for thermal management. In this study, the on-demand thermal management (ODTM) of silica aerogel with either passive thermal insulation, passive heating, or passive cooling in different environments is revealed. The ODTM behavior of silica aerogels can be simply fulfilled through their optical property variations such as solar light transparency and infrared emissivity, which are controllable via the microstructures of the building blocks and surface composition design. Robust solar heating of 25 °C higher than the ambient in the daytime and sub-ambient cooling of 7 °C at night is achieved with the traditional transparent silica aerogel. Interestingly, sub-ambient cooling of 5 °C in the daytime and a warmer state on cold nights is achieved by modifying its solar transmittance and infrared emissivity. This study guides a comprehensive understanding of the thermal management behavior of silica aerogels and leads to ODTM applications of silica aerogels by tailoring their optical and thermal conductivity properties.  相似文献   
156.
Organic–inorganic formamidinium lead triiodide (FAPbI3) hybrid perovskite quantum dot (QD) is of great interest to photovoltaic (PV) community due to its narrow band gap, higher ambient stability, and long carrier lifetime. However, the surface ligand management of FAPbI3 QD is still a key hurdle that impedes the design of high-efficiency solar cells. Herein, this study first develops a solution-mediated ligand exchange (SMLE) for preparing FAPbI3 QD film with enhanced electronic coupling. By dissolving optimal methylammonium iodide (MAI) into antisolvent to treat the FAPbI3 QD solution, the SMLE can not only effectively replace the long-chain ligands, but also passivate the A- and X-site vacancies. By combining experimental and theoretical results, this study demonstrates that the SMLE engineered FAPbI3 QD exhibits lower defect density, which is beneficial for fabricating high-quality QD arrays with desired morphology and carrier transport. Consequently, the SMLE FAPbI3 QD based solar cell outputs a champion efficiency of 15.10% together with improved long-term ambient storage stability, which is currently the highest reported value for hybrid perovskite QD solar cells. These results would provide new design principle of hybrid perovskite QDs toward high-performance optoelectronic application.  相似文献   
157.
Despite the outstanding power conversion efficiency (PCE) of perovskite solar cells (PSCs) achieved over the years, unsatisfactory stability and lead toxicity remain obstacles that limit their competitiveness and large-scale practical deployment. In this study, in situ polymerizing internal encapsulation (IPIE) is developed as a holistic approach to overcome these challenges. The uniform polymer internal package layer constructed by thermally triggered cross-linkable monomers not only solidifies the ionic perovskite crystalline by strong electron-withdrawing/donating chemical sites, but also acts as a water penetration and ion migration barrier to prolong shelf life under harsh environments. The optimized MAPbI3 and FAPbI3 devices with IPIE treatment yield impressive efficiencies of 22.29% and 24.12%, respectively, accompanied by remarkably enhanced environmental and mechanical stabilities. In addition, toxic water-soluble lead leakage is minimized by the synergetic effect of the physical encapsulation wall and chemical chelation conferred by the IPIE. Hence, this strategy provides a feasible route for preparing efficient, stable, and eco-friendly PSCs.  相似文献   
158.
The electron transport layer (ETL) is a critical component in achieving high device performance and stability in organic solar cells. Conjugated polyelectrolytes (CPEs) have become an attractive alternative due to film-forming properties and ease of preparation. However, p-type CPEs generally exhibit poor charge mobility and conductivity, incorporation of electron-withdrawing units forming alternated D-A conjugated backbone can make up for these deficiencies. Herein, the ratio of electron withdrawing moieties are further increased and two poly(A1-alt-A2) typed PIIDNDI-Br and PDPPNDI-Br based on the combination of naphthalene diimide (NDI) with isoindigo (IID) or diketopyrrolopyrrole (DPP) via direct arylation polycondensation are synthesized. These CPEs possess excellent alcohol solubility, a suitable lowest unocuppied molecular orbital energy level, and work function tunability. Surprisingly, the incorporation of IID and DPP units generate distinct self-doping behaviors, which are confirmed by UV–vis absorption and ESR spectra. However, no matter doped or undoped, both CPEs present better charge-transporting properties and conductivity when utilized as ETLs. The PIIDNDI-Br and PDPPNDI-Br display good universal compatibility with the blend of PM6:Y6 and PM6:L8-BO, and PCEs of 18.32% and 18.36% are obtained, respectively, which also present excellent storage stability. In short, the combination of two different acceptors demonstrates an efficient strategy to design highly efficient ETLs for high performance photovoltaic devices.  相似文献   
159.
The power conversion efficiency (PCE) of organic solar cells (OSCs) has reached high values of over 19%. However, most of the high-efficiency OSCs are fabricated by spin-coating with toxic solvents and the optimal photoactive layer thickness is limited to 100 nm, limiting practical development of OSCs. It is a great challenge to obtain ideal morphology for high-efficiency thick-film OSCs when using non-halogenated solvents due to the unfavorable film formation kinetics. Herein, high-efficiency ternary thick-film (300 nm) OSCs with PCE of 15.4% based on PM6:BTR-Cl:CH1007 are fabricated by hot slot-die coating using non-halogenated solvent (o-xylene) in the air. Compared to PM6:BTR-Cl:Y6 blends, the stronger pre-aggregation of CH1007 in solution induces the earlier aggregation of CH1007 molecules and longer aggregation time, and thus results in high and balanced crystallinity of donors and acceptor in CH1007-based ternary film, which led to high-carrier mobility and suppressed charge recombination. The ternary strategy is further used to fabricate high-efficiency, thick-film, large-area, and flexible devices processed from non-halogenated solvents, paving the way for industrial development of OSCs.  相似文献   
160.
Here, a near-infrared (NIR)-absorbing small-molecule acceptor (SMA) Y-SeNF with strong intermolecular interaction and crystallinity is developed by combining selenophene-fused core with naphthalene-containing end-group, and then as a custom-tailor guest acceptor is incorporated into the binary PM6:L8-BO host system. Y-SeNF shows a 65 nm red-shifted absorption compared to L8-BO. Thanks to the strong crystallinity and intermolecular interaction of Y-SeNF, the morphology of PM6:L8-BO:Y-SeNF can be precisely regulated by introducing Y-SeNF, achieving improved charge-transporting and suppressed non-radiative energy loss. Consequently, ternary polymer solar cells (PSCs) offer an impressive device efficiency of 19.28% with both high photovoltage (0.873 V) and photocurrent (27.88 mA cm−2), which is one of the highest efficiencies in reported single-junction PSCs. Notably, ternary PSC has excellent stability under maximum-power-point tracking for even over 200 h, which is better than its parental binary devices. The study provides a novel strategy to construct NIR-absorbing SMA for efficient and stable PSCs toward practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号