首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19333篇
  免费   2368篇
  国内免费   1698篇
电工技术   1193篇
技术理论   2篇
综合类   2012篇
化学工业   3681篇
金属工艺   913篇
机械仪表   678篇
建筑科学   1274篇
矿业工程   349篇
能源动力   579篇
轻工业   903篇
水利工程   524篇
石油天然气   469篇
武器工业   572篇
无线电   2899篇
一般工业技术   2988篇
冶金工业   523篇
原子能技术   347篇
自动化技术   3493篇
  2024年   64篇
  2023年   389篇
  2022年   510篇
  2021年   768篇
  2020年   718篇
  2019年   739篇
  2018年   695篇
  2017年   811篇
  2016年   779篇
  2015年   773篇
  2014年   1052篇
  2013年   1425篇
  2012年   1250篇
  2011年   1418篇
  2010年   1091篇
  2009年   1133篇
  2008年   1069篇
  2007年   1185篇
  2006年   1049篇
  2005年   915篇
  2004年   794篇
  2003年   715篇
  2002年   612篇
  2001年   485篇
  2000年   476篇
  1999年   386篇
  1998年   301篇
  1997年   288篇
  1996年   223篇
  1995年   198篇
  1994年   191篇
  1993年   158篇
  1992年   114篇
  1991年   102篇
  1990年   99篇
  1989年   83篇
  1988年   60篇
  1987年   40篇
  1986年   24篇
  1985年   47篇
  1984年   31篇
  1983年   38篇
  1982年   29篇
  1981年   10篇
  1980年   13篇
  1979年   5篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
21.
The environmental performance of 316L grade stainless steel, in the form of tensile specimens containing a single corrosion pit with various aspect ratios, under cyclic loading in aerated chloride solutions is investigated in this study. Results from environmental tests were compared and contrasted with those obtained using finite element analysis (FEA). Fractography of the failed specimens obtained from experiments revealed that fatigue crack initiation took place at the base of the shallow pit. The crack initiation shifted towards the shoulder and the mouth of the pit for pits of increasing depth. This process is well predicted by FEA, as the strain contour maps show that strain is the highest around the centric strip of the pit. However, for shallow pits, local strain is uniformly distributed around that strip but begins to concentrate more towards the shoulder and the mouth region for increasingly deep pits.  相似文献   
22.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
23.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
24.
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal–epithelial transition, MET), now collectively called epithelial–mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial–mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.  相似文献   
25.
We demonstrate the structural evolution of polymorphic phases in Al2O3-inserted SrMnO3 ceramics synthesized by solid state reaction. While the 4H-hexagonal phase is predominant in pure SrMnO3 ceramics, a small amount of 6H-hexagonal polymorph is identified in addition to the primary 4H-hexagonal SrMnO3 and the secondary hexagonal SrAl2O4 phases in the as-sintered ceramics, evidenced by x-ray diffraction and subsequent Rietveld refinement analyses. The existence of the 6H-hexagonal SrMnO3 phase is corroborated using Raman spectroscopy. The chemical compositions and electronic structures of the Al2O3-inserted SrMnO3 compounds are also examined using energy dispersive spectroscopy and x-ray photoelectron spectroscopy, respectively. The first-principles calculations reveal that there is no clear difference between the total energies of 4H- and 6H-hexagonal polymorphs regardless of the presence/absence of Sr and oxygen vacancies. Possible origins are discussed with the estimation of actual strain based on the refined lattice parameter of 6H SrMnO3.  相似文献   
26.
27.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH.  相似文献   
28.
NO2 fission is regarded to be the most important initial decomposition process of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). In this study, four CL-20 conformers based on the ε-CL-20 were obtained after the optimization at m062x/cc-pvtz level, and the bond length, bond order and bond dissociation energy of the N-N bonds were examined to investigate the stability of these bonds. In addition, the rate constants and activation energy of the NO2 fission were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that N-N bonds in the case of pseudo-equatorial and axial of nitro groups are the most stable and the least stable, respectively, by evaluating the bond length, bond order and minimum energy path (MEP). The NO2 fission rate constants are affected by not only the stability of N-N bonds but also the repulsion forces from the other nitro groups, and the fission process for pseudo-equatorial positioning of nitro groups is easier to be accelerated due to the increase of the repulsion forces. The decomposition of CL-20 conformer may mainly originate from the fission of the pseudo-equatorial positioning of nitro groups, especially for CL-20 III conformer because of the significant low activation energy.  相似文献   
29.
《Ceramics International》2020,46(7):8675-8681
The dielectric properties and bipolar polarization-electric field (P-E) and strain-electric field (S-E) dynamic hysteresis of a relaxor [001]c 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 (PMN-0.27PT) single crystal were investigated to reveal more details of the temperature-induced phase transitions. Different linear scaling relations for ferroelectric hysteresis area <A>, coercive field Ec, saturation polarization Ps and remnant polarization Pr versus temperature τ were measured in different temperature regions. For each measurement frequency f, all hysteresis parameters were found to decrease linearly with temperature in the temperature range of the single rhombohedral (R) phase or tetragonal (T) phase, and the rate of decrease in the T phase was observed to be much larger than the corresponding rate in the R phase. In the temperature range near the R-T phase transition, the exponent α in the power law <A>∝f α for the R phase was found to be smaller than that for the T phase, and the magnitude of α depended strongly on temperature when the crystal was in the R-T coexisting phase state. Our experimental and theoretical results indicate that the difference in the activation energy and dipole moment in the R and T phases may lead to the observed discrepancy for the P-E and S-E hysteresis behaviour in different temperature regions.  相似文献   
30.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号