首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16731篇
  免费   1489篇
  国内免费   869篇
电工技术   462篇
综合类   580篇
化学工业   3992篇
金属工艺   1870篇
机械仪表   447篇
建筑科学   47篇
矿业工程   220篇
能源动力   658篇
轻工业   610篇
水利工程   3篇
石油天然气   168篇
武器工业   30篇
无线电   2709篇
一般工业技术   6117篇
冶金工业   864篇
原子能技术   151篇
自动化技术   161篇
  2024年   33篇
  2023年   228篇
  2022年   170篇
  2021年   346篇
  2020年   354篇
  2019年   373篇
  2018年   443篇
  2017年   537篇
  2016年   553篇
  2015年   592篇
  2014年   764篇
  2013年   1110篇
  2012年   1081篇
  2011年   1568篇
  2010年   1151篇
  2009年   1136篇
  2008年   1028篇
  2007年   1144篇
  2006年   1009篇
  2005年   738篇
  2004年   721篇
  2003年   650篇
  2002年   603篇
  2001年   507篇
  2000年   414篇
  1999年   283篇
  1998年   287篇
  1997年   248篇
  1996年   161篇
  1995年   133篇
  1994年   121篇
  1993年   98篇
  1992年   106篇
  1991年   106篇
  1990年   71篇
  1989年   37篇
  1988年   34篇
  1987年   24篇
  1986年   22篇
  1985年   22篇
  1984年   13篇
  1983年   8篇
  1982年   14篇
  1981年   5篇
  1979年   3篇
  1978年   6篇
  1976年   7篇
  1975年   7篇
  1974年   9篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
21.
γ-Al2O3 supported vanadium oxides were modified by tungsten and molybdenum oxides in order to improve dispersion and selectivity towards olefins in propane oxidative dehydrogenation (ODH). Both vanadium–tungsten and vanadium–molybdenum catalysts were obtained by adsorption of mixed isopolyanions (VW5O195−, V2W4O194−, VMo5O195− and V2Mo4O194−) from aqueous solutions. The isopolyanion solutions were characterized by UV-Vis and 51V NMR spectroscopy. Vanadium, vanadium–tungsten and vanadium–molybdenum precursors and catalysts were also characterized by UV-Vis (diffuse reflectance) and solid state 51V NMR spectroscopy. An improved selectivity to propene in the presence of tungsten and molybdenum in VOx/γ-Al2O3 was observed and attributed to dilution of vanadium by tungsten or molybdenum oxides on the γ-Al2O3 surface.  相似文献   
22.
In this work, the solid state reaction between a thin film of copper and silicon has been studied using Rutherford backscattering spectroscopy, X-ray diffraction, scanning electron microscopy and microprobe analysis. Cu films of 400 and 900 Å thicknesses are thermally evaporated on Si(1 1 1) substrates, part of them had previously been implanted with antimony ions of 5×1014 or 5×1015 at. cm−2 doses. The samples are heat-treated in vacuum at temperatures in the range 200–700 °C for various times. The results show the growth and formation of Cu3Si and Cu4Si silicides under crystallites shape dispatched on the sample surface, independently of the implantation dose. On the other hand, it is established that the copper layer is less and less consumed as the antimony dose increases, resulting in the accumulation of Sb+ ions at silicide/Si interface and in the silicide layer close to surface. The exposure of samples to air at room temperature shows the stability of Cu4Si phase whereas the Cu3Si silicide disappears to the benefit of the silicon dioxide formation. The observed phenomena are discussed.  相似文献   
23.
PECVD法低温沉积多晶硅薄膜的研究   总被引:9,自引:3,他引:6  
在玻璃衬底上采用常规的PKCVD法在低温(≤400℃)条件下制得大颗较(直径>100nm)、择优取向(220)明显的多晶硅薄膜。选用的反应气体为SiF4和H2混合气体。加入少量的SiH4后,沉积速率提高了近10倍。分析认为,在低温时促使多晶硅结构形成的反应基元应是SiFmHn(m n≤3),而不可能是SiHn(n≤3)基团。  相似文献   
24.
Nanocrystalline Gd2O3:A (A=Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol–gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 °C and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 μm). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 °C, and the optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.  相似文献   
25.
Measurement Method of the Thickness Uniformity for Polymer Films   总被引:1,自引:0,他引:1  
Several methods for investigating the thickness uniformity of polymer thin films are presented as well their measurement principles.A comparison of these experimental methods is given.The cylindrical lightwave feflection method is found to can obtain the thickness distribution along a certain direction.It is simple and suitable method to evaluate the film thickness uniformity.  相似文献   
26.
Incorporation of silicon species from an alloy substrate into anodic titania is shown to stabilise the structure of the film, facilitating investigation of the ionic transport processes in amorphous titania grown at high efficiency. Thus, an amorphous anodic film developed on a sputtering-deposited Ti-6 at.%Si alloy formed to 100 V in phosphoric acid electrolyte in contrast to a partially crystalline film developed on relatively pure titanium at <20 V. Silicon species, which are immobile and act as marker species in the growing film, are present in the inner 58% of the film thickness. Evidently, the film material forms simultaneously at the film/electrolyte and alloy/film interfaces by co-operative transport of cations and anions, as is usual in amorphous anodic oxides. The phosphate anions incorporated from the electrolyte migrate inward at 0.34 times the rate of O2− ions and hence are present in the outer 62% of the film thickness.  相似文献   
27.
We present uniaxial tensile test results for 30–50 nm thick freestanding aluminum films. Young’s modulus and ductility were found to decrease monotonically with grain size. Reverse Hall–Petch behavior was observed with no appreciable room temperature creep. Non-linear elasticity with small irreversible deformation was observed for 50 nm thick specimens.  相似文献   
28.
The microstructures of Cu films deposited by the self-ion assisted, partially ionized beam (PIB) deposition technique under two different accelerating potentials, 0 KeV and 6 KeV, are compared. The 6 KeV film shows a bimodal (111) fiber and (100) fiber texture with an abundance of twin boundaries and a relatively large average grain size with a typical lognormal distribution. The 0 KeV film consists of small, mostly (111) oriented grains with islands of abnormally large (100) grains. The controlling factors for the abnormal growth of the (100) grains are discussed in relation to the observed microstructures, showing that all factors necessary for abnormal (100) growth are present in the films.  相似文献   
29.
Thin films on aluminum-tungsten alloys were prepared by co-deposition of pure aluminum and pure tungsten, each sputtered by an independently controlled magnetron source, on glass and sapphire substrates. Completely amorphous films were obtained in the Al80W20-Al67W33 composition range. Passivity and corrosion behavior of amorphous Al-W alloys were investigated in 1 M deaerated hydrochloric acid solution using polarization and impedance spectroscopy measurements and have been correlated with the properties of pure alloy components. Tungsten and sputter-deposited Al-W thin films are inherently passive materials while aluminum undergoes pitting corrosion in hydrochloric acid solution. The passive film formed at the OCP on each alloy possesses excellent electric and dielectric properties comparable to those of the isolating film on tungsten. The absolute impedance increases with increasing tungsten content in the alloy. According to electrochemical polarization measurements, alloying Al with W in solid solution significantly enhances the material's resistance to pitting corrosion by shifting the breakdown potential above 2000 mV (Al67W33) and lowering the corrosion rate at the OCP by more than two orders of magnitude. The most likely mechanism explaining the passivity of amorphous Al-W alloys, the Solute Vacancy Interaction Model (SVIM), involves the formation of complexes between highly oxidized solute atoms (W+6) and mobile cation vacancies, which restrict the transport of Cl through the oxide film and inhibit its breakdown in hydrochloric acid solution. The role that film stress relaxation effects and microscopic defects in amorphous Al-W films, of the some composition, and deposited on various substrates play in their corrosion resistance is discussed.  相似文献   
30.
TeMxMo1.7O mixed oxides (M = V and/or Nb; x = 0-1.7) have been prepared by calcination of the corresponding salts at 600 °C in an atmosphere of N2. A new crystalline phase, with a Te/V/Mo atomic ratio of 1/0.2-1.5/1.7, has been isolated and characterised by XRD and IR spectroscopy. This phase is observed in the TeVMo or TeVNbMo mixed oxide but not in the TeNbMo mixed oxide. The new crystalline phase shows an XRD pattern similar to Sb4Mo10O31 and probably corresponds to the M1 phase recently proposed by Aouine et al. (Chem. Commun. 1180, 2001) to be present in the active and selective MoVTeNbO catalysts. Although these catalysts present a very low activity in the propane oxidation, they are active and selective in the oxidation of propene to acrolein and/or acrylic acid. However, the product distribution depends on the catalyst composition. Acrolein or acrylic acid can be selectively obtained from propene on Nb-free or Nb-containing TeVMo catalysts, respectively. The presence of both V and Nb, in addition to Mo and Te, appears to be important in the formation of acrylic acid from propene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号