首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19362篇
  免费   2787篇
  国内免费   1281篇
电工技术   2203篇
技术理论   1篇
综合类   2065篇
化学工业   1074篇
金属工艺   342篇
机械仪表   2701篇
建筑科学   504篇
矿业工程   485篇
能源动力   228篇
轻工业   370篇
水利工程   188篇
石油天然气   135篇
武器工业   331篇
无线电   3240篇
一般工业技术   2285篇
冶金工业   167篇
原子能技术   84篇
自动化技术   7027篇
  2024年   108篇
  2023年   482篇
  2022年   478篇
  2021年   739篇
  2020年   730篇
  2019年   579篇
  2018年   593篇
  2017年   684篇
  2016年   726篇
  2015年   853篇
  2014年   1206篇
  2013年   1071篇
  2012年   1406篇
  2011年   1686篇
  2010年   1221篇
  2009年   1282篇
  2008年   1284篇
  2007年   1454篇
  2006年   1244篇
  2005年   1178篇
  2004年   991篇
  2003年   772篇
  2002年   673篇
  2001年   572篇
  2000年   421篇
  1999年   241篇
  1998年   174篇
  1997年   150篇
  1996年   104篇
  1995年   91篇
  1994年   56篇
  1993年   39篇
  1992年   32篇
  1991年   38篇
  1990年   23篇
  1989年   14篇
  1988年   7篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
3.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
4.
杨春燕  宾冬梅  黎新 《电信科学》2021,37(2):144-153
提出了一种基于实用拜占庭容错(PBFT)算法的区块链技术,首先对传统的实用拜占庭容错算法原理进行了阐述,该传统算法包含前期、需求、预准备、准备、确认、答复6个阶段,但传统算法具有实时性差、缺乏惩罚机制、带宽高的缺点。针对出现的这些问题,又对传统算法进行了改进,具体涉及记账节点、共识过程以及视图切换过程。通过测试进一步证明了该改进算法的实用性,并将该算法应用于电网企业中,构建的虚拟仓库实现了联储联备,降低了库存资金的耗费,并且提高了电网企业库存管理的效率。  相似文献   
5.
《Ceramics International》2022,48(11):15056-15063
Hydrogen (H2) sensors based on metal oxide semiconductors (MOS) are promising for many applications such as a rocket propellant, industrial gas and the safety of storage. However, poor selectivity at low analyte concentrations, and independent response on high humidity limit the practical applications. Herein, we designed rGO-wrapped SnO2–Pd porous hollow spheres composite (SnO2–Pd@rGO) for high performance H2 sensor. The porous hollow structure was from the carbon sphere template. The rGO wrapping was via self-assembly of GO on SnO2-based spheres with subsequent thermal reduction in H2 ambient. This sensor exhibited excellently selective H2 sensing performances at 390 °C, linear response over a broad concentration range (0.1–1000 ppm) with recovery time of only 3 s, a high response of ~8 to 0.1 ppm H2 in a minute, and acceptable stability under high humidity conditions (e. g. 80%). The calculated detection limit of 16.5 ppb opened up the possibility of trace H2 monitoring. Furthermore, this sensor demonstrated certain response to H2 at the minimum concentration of 50 ppm at 130 °C. These performances mainly benefited from the special hollow porous structure with abundant heterojunctions, the catalysis of the doped-PdOx, the relative hydrophobic surface from rGO, and the deoxygenation after H2 reduction.  相似文献   
6.
Most real-world vehicle nodes can be structured into an interconnected network of vehicles. Through structuring these services and vehicle device interactions into multiple types, such internet of vehicles becomes multidimensional heterogeneous overlay networks. The heterogeneousness of the overlays makes it difficult for the overlay networks to coordinate with each other to improve their performance. Therefore, it poses an interesting but critical challenge to the effective analysis of heterogeneous virtual vehicular networks. A variety of virtual vehicular networks can be easily deployed onto the native network by applying the concept of SDN (Software Defined Networking). These virtual networks reflect their heterogeneousness due to their different performance goals, and they compete for the same physical resources of the underlying network, so that a sub-optimal performance of the virtual networks may be achieved. Therefore, we propose a Deep Reinforcement Learning (DRL) approach to make the virtual networks cooperate with each other through the SDN controller. A cooperative solution based on the asymmetric Nash bargaining is proposed for co-existing virtual networks to improve their performance. Moreover, the Markov Chain model and DRL resolution are introduced to leverage the heterogeneous performance goals of virtual networks. The implementation of the approach is introduced, and simulation results confirm the performance improvement of the latency sensitive, loss-rate sensitive and throughput sensitive heterogeneous vehicular networks using our cooperative solution.  相似文献   
7.
本文以云杉八齿小蠹Ips typographus Linnaeus为例,经标本选取,观察虫体整体形态,绘制整体结构草图,电子显微镜观察局部、得到局部数字图像,分别建立虫体每一部分的高精度细节。把模型每部分拼装在一起组成整体模型,构建出了云杉八齿小蠹三维虚拟昆虫数字化模型。  相似文献   
8.
This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development.  相似文献   
9.
王芳  林伟国  常新禹  邱宪波 《化工学报》2019,70(12):4898-4906
目前管道泄漏检测方法可有效检测突发泄漏,对于缓慢泄漏则存在检测灵敏度低、定位不准确等问题。基于此,提出了一种基于信号增强的缓慢泄漏检测方法。通过信号压缩(抽取及移位)克服缓慢泄漏压力信号下降平缓的缺点;根据声波信号具有波形尖锐突出、对突发泄漏敏感的优点,通过建立以压力为输入、虚拟声波为输出的声波信号变送器模型,将压力信号转换为声波信号,克服了泄漏压力信号容易被淹没在管道压力波动及背景噪声中的缺点,实现了缓慢泄漏信号的增强;利用临近插值方法重构虚拟声波信号,基于延时互相关分析实现了缓慢泄漏的准确定位。实验结果表明,该方法具有显著的信号增强效果和定位精度,实现了缓慢泄漏的准确检测。  相似文献   
10.
Abstract

Industry 4.0 aims at providing a digital representation of a production landscape, but the challenges in building, maintaining, optimizing, and evolving digital models in inter-organizational production chains have not been identified yet in a systematic manner. In this paper, various Industry 4.0 research and technical challenges are addressed, and their present scenario is discussed. Moreover, in this article, the novel concept of developing experience-based virtual models of engineering entities, process, and the factory is presented. These models of production units, processes, and procedures are accomplished by virtual engineering object (VEO), virtual engineering process (VEP), and virtual engineering factory (VEF), using the knowledge representation technique of Decisional DNA. This blend of the virtual and physical domains permits monitoring of systems and analysis of data to foresee problems before they occur, develop new opportunities, prevent downtime, and even plan for the future by using simulations. Furthermore, the proposed virtual model concept not only has the capability of Query Processing and Data Integration for Industrial Data but also real-time visualization of data stream processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号