首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12061篇
  免费   365篇
  国内免费   312篇
电工技术   279篇
综合类   669篇
化学工业   1715篇
金属工艺   1164篇
机械仪表   1375篇
建筑科学   895篇
矿业工程   854篇
能源动力   1047篇
轻工业   226篇
水利工程   133篇
石油天然气   377篇
武器工业   126篇
无线电   470篇
一般工业技术   1314篇
冶金工业   678篇
原子能技术   170篇
自动化技术   1246篇
  2024年   9篇
  2023年   153篇
  2022年   464篇
  2021年   399篇
  2020年   327篇
  2019年   253篇
  2018年   283篇
  2017年   313篇
  2016年   366篇
  2015年   446篇
  2014年   654篇
  2013年   660篇
  2012年   634篇
  2011年   977篇
  2010年   633篇
  2009年   712篇
  2008年   654篇
  2007年   763篇
  2006年   689篇
  2005年   630篇
  2004年   499篇
  2003年   386篇
  2002年   346篇
  2001年   225篇
  2000年   178篇
  1999年   182篇
  1998年   167篇
  1997年   124篇
  1996年   110篇
  1995年   94篇
  1994年   62篇
  1993年   65篇
  1992年   53篇
  1991年   47篇
  1990年   32篇
  1989年   33篇
  1988年   27篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1984年   12篇
  1983年   3篇
  1982年   8篇
  1981年   12篇
  1980年   4篇
  1979年   7篇
  1977年   3篇
  1975年   2篇
  1973年   3篇
  1965年   3篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
1.
In the last few years, more and more complex microsphere models have been proposed to predict the mechanical response of various polymers. Similarly than for microplane models, they consist in deriving a one-dimensional force vs. stretch equation and to integrate it over the unit sphere to obtain a three-dimensional constitutive equation. In this context, the focus of authors is laid on the physics of the one-dimensional relationship, but in most of the case the influence of the integration method on the prediction is not investigated.Here we compare three numerical integration schemes: a classical Gaussian scheme, a method based on a regular geometric meshing of the sphere, and an approach based on spherical harmonics. Depending on the method, the number of integration points may vary from 4 to 983,040! Considering simple quantities, i.e. principal (large) strain invariants, it is shown that the integration method must be carefully chosen. Depending on the quantities retained to described the one-dimensional equation and the required error, the performances of the three methods are discussed. Consequences on stress–strain prediction are illustrated with a directional version of the classical Mooney–Rivlin hyperelastic model. Finally, the paper closes with some advices for the development of new microsphere constitutive equations.  相似文献   
2.
In this study, two dimensional (2D) and quasi three-dimensional (quasi-3D) shear deformation theories are presented for static and free vibration analysis of single-layer functionally graded (FG) plates using a new hyperbolic shape function. The material of the plate is inhomogeneous and the material properties assumed to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori–Tanaka model, in terms of the volume fractions of the constituents. The fundamental governing equations which take into account the effects of both transverse shear and normal stresses are derived through the Hamilton's principle. The closed form solutions are obtained by using Navier technique and then fundamental frequencies are found by solving the results of eigenvalue problems. In-plane stress components have been obtained by the constitutive equations of composite plates. The transverse stress components have been obtained by integrating the three-dimensional stress equilibrium equations in the thickness direction of the plate. The accuracy of the present method is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.  相似文献   
3.
Due to the law of reflection, a concave reflecting surface/mirror causes the incident light rays to converge and a convex surface/mirror causes the light rays to reflect away so that they all appear to be diverging. These converging and diverging behaviors cause that the curved mirrors show different image types depending on the distance between the object and the mirror. We model such optical phenomena metaphorically into the searching process of numerical optimization by a new algorithm called optics inspired optimization (OIO). OIO treats the surface of the numerical function to be optimized as a reflecting surface in which each peak is assumed to reflect as a convex mirror and each valley to reflect as a concave one. Each individual is assumed to be an artificial object (or light point) that its artificially glittered ray is reflected back by the function surface, given that the surface is convex or concave, and the artificial image is formed (a candidate solution is generated within the search domain) based on the mirror equations adopted from physics of optics. Besides OIO, we introduce different variants of it, called ROIO (Rotation based OIO), and COIO (Convex combination based OIO) algorithms and conduct an extensive computational effort to find out the merit of the new algorithms. Our comparisons on benchmark test functions and a real world engineering design application (i.e., optimization of a centrifuge pump) demonstrate that the new algorithms are efficient and compete better than or similar to most of state of the art optimization algorithms with the advantage of accepting few input parameters.  相似文献   
4.
This paper presents a model of shell and tube evaporator with micro-fin tubes using R1234yf and R134a. The model developed for this evaporator uses the ε-NTU method to predict the evaporating pressure, the refrigerant outlet enthalpy and the outlet temperature of the secondary fluid. The model accuracy is evaluated using different two-phase flow boiling correlations for micro-fin tubes and comparing predicted and experimental data. The experimental tests were carried out for a wide range of operating conditions using R134a and R1234yf as working fluids. The predicted parameter with maximum deviations, between the predicted and experimental data, is the evaporating pressure. The correlation of Akhavan– Behabadi et al. was used to predict flow boiling heat transfer, with an error on cooling capacity prediction below 5%. Simulations, carried out with this validated model, show that the overall heat transfer coefficient of R1234yf has a maximum decrease of 10% compared with R134a.  相似文献   
5.
The neutral axis depth is considered the best parameter for quantifying the moment redistribution in continuous concrete beams, as exemplified in various design codes worldwide. It is therefore important to well understand the variation of neutral axis depth against moment redistribution. This paper describes a theoretical investigation into the neutral axis depth and moment redistribution in concrete beams reinforced with fibre reinforced polymer (FRP) and steel bars. A finite element model has been developed. The model predictions are in favourable agreement with experimental results. Three types of reinforcement are considered, namely, glass fibre, carbon fibre and steel. Various levels of reinforcement ratio are used for a parametric evaluation. The results indicate that FRP reinforced concrete continuous beams exhibit significantly different response characteristics regarding the moment redistribution and variation of neutral axis depth from those of steel reinforced ones. In addition, it is found that the code recommendations are generally unsafe for calculating the permissible moment redistribution in FRP reinforced concrete beams, but the neglect of redistribution in such beams may be overconservative.  相似文献   
6.
The paper proposes a limit analysis approach to define the ultimate load capacity of orthotropic composite laminates under biaxial loading and plane stress conditions. A lower bound to the collapse load multiplier is computed by solving a maximization nonlinear problem, according to the static theorem of limit analysis. To set up the optimization problem a stress field distribution is hypothesized at lamina level, moreover inter-lamina stresses are also considered. The effectiveness and validity of the proposed approach is shown by comparing the obtained numerical predictions both with available experimental data and with other numerical results carried out by means of a different numerical lower bound approach.  相似文献   
7.
Numerical dissipation acts as artificial viscosity to make smoke viscous. Reducing numerical dissipation is able to recover visual details smeared out by the numerical dissipation. Great efforts have been devoted to suppress the numerical dissipation in smoke simulation in the past few years. In this paper we investigate methods of combating the numerical dissipation. We describe visual consequences of the numerical dissipation and explore sources that introduce the numerical dissipation into course of smoke simulation. Methods are investigated from various aspects including grid variation, high-order advection, sub-grid compensation, invariant conservation, and particle-based improvement, followed by discussion and comparison in terms of visual quality, computational overhead, ease of implementation, adaptivity, and scalability, which leads to their different applicability to various application scenarios.  相似文献   
8.
一种PD雷达动目标模拟与微波测控系统   总被引:1,自引:0,他引:1  
介绍了一种基于PC/104总线,具有GPIB程控功能,采用无内部微波源体制,通过在雷达载频上调制多普勒频率模型目标速度信息,延迟雷达发射机触发脉冲模拟目标距离信息并具有微波功率精确定标与衰减功能的PD雷达动目标模拟与微波测控系统。  相似文献   
9.
In this paper, the moving least-squares differential quadrature (MLSDQ) method is employed for free vibration of thick antisymmetric laminates based on the first-order shear deformation theory. The generalized displacements of the laminates are independently approximated with the centered moving least-squares (MLS) technique within each domain of influence. The MLS nodal shape functions and their partial derivatives are computed quickly through back-substitutions after only one LU decomposition. Subsequently, the weighting coefficients in the MLSDQ discretization are determined with the nodal partial derivatives of the MLS shape functions. The MLSDQ method combines the merits of both the differential quadrature and meshless methods which can be conveniently applied to complex domains and irregular discretizations without loss of implementation efficiency and numerical accuracy. The natural frequencies of the laminates with various edge conditions, ply angles, and shapes are calculated and compared with the existing solutions to study the numerical accuracy and stability of the MLSDQ method. Effects of support size, order of completeness of basis functions, and node irregularity on the numerical accuracy are investigated in detail.  相似文献   
10.
River Bifurcation Analysis by Physical and Numerical Modeling   总被引:1,自引:0,他引:1  
In the framework of a river regulation design of the Po River Delta (Northern Italy), a study on a large physical model of the bifurcation Po di Goro-Po di Venezia was conducted with the main objective of determining the discharge subdivision rate at the river node, in order to assess the inflow conditions in the Po di Goro River for flood risk analysis. In this context, a two-dimensional depth averaged numerical model was tested against measured values, with reference to the prototype. In this paper a comprehensive analysis and discussion of the results is reported in order to highlight the applicability of numerical models in comparison with physical ones in river engineering applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号