首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
  国内免费   3篇
化学工业   63篇
金属工艺   3篇
无线电   1篇
  2022年   19篇
  2021年   32篇
  2020年   5篇
  2019年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
21.
Recently, the synaptic proteins neurogranin (Ng) and α-synuclein (α-Syn) have attracted scientific interest as potential biomarkers for synaptic dysfunction in neurodegenerative diseases. In this study, we measured the CSF Ng and α-Syn concentrations in patients affected by AD (n = 69), non-AD neurodegenerative disorders (n-AD = 50) and non-degenerative disorders (n-ND, n = 98). The concentrations of CSF Ng and α-Syn were significantly higher in AD than in n-AD and n-ND. Moreover, the Aβ42/Ng and Aβ42/α-Syn ratios showed statistically significant differences between groups and discriminated AD patients from n-AD patients, better than Ng or α-Syn alone. Regression analyses showed an association of higher Ng concentrations with MMSE < 24, pathological Aβ 42/40 ratios, pTau, tTau and the ApoEε4 genotype. Aβ 42/Ng was associated with MMSE < 24, an AD-related FDG-PET pattern, the ApoEε4 genotype, pathological Aβ 42 levels and Aβ 42/40 ratios, pTau, and tTau. Moreover, APO-Eε4 carriers showed higher Ng concentrations than non-carriers. Our results support the idea that the Aβ 42/Ng ratio is a reliable index of synaptic dysfunction/degeneration able to discriminate AD from other neurological conditions.  相似文献   
22.
Accumulation of α-synuclein (α-syn) is the pathological hallmark of α-synucleinopathy. Rapid eye movement (REM) sleep behavior disorder (RBD) is a pivotal manifestation of α-synucleinopathy including Parkinson’s disease (PD). RBD is clinically confirmed by REM sleep without atonia (RWA) in polysomnography. To accurately characterize RWA preceding RBD and their underlying α-syn pathology, we inoculated α-syn preformed fibrils (PFFs) into the striatum of A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice which exhibit RBD-like phenotypes with RWA. RWA phenotypes were aggravated by PFFs-inoculation in A53T BAC-SNCA Tg mice at 1 month after inoculation, in which prominent α-syn pathology in the pedunculopontine nucleus (PPN) was observed. The intensity of RWA phenotype could be dependent on the severity of the underlying α-syn pathology.  相似文献   
23.
目的:研究α-突触核蛋白(α-synuclein)对于神经细胞焦亡发生的影响和机制。方法:以小鼠海马神经元细胞HT22细胞株为对象,体外培养后用α-synuclein干预细胞,以CCK-8法检测细胞活力,确定IC50值。设置对照组(Con组)后,采用TUNEL染色法检测细胞焦亡水平,免疫荧光法观察Gasdermin-D-N(GSDMD-N)的表达,Western blot法检测细胞中NOD样受体热蛋白结构域相关蛋白3(NLRP3)、细胞凋亡相关斑点样蛋白(ASC)、Gasdermin-D(GSDMD)、GSDMD-N、Caspase-1的表达水平,酶联免疫吸附法检测培养基中IL-18、IL-1β的表达水平。采用Caspase-1抑制剂预处理HT22后,同样使用IC50值的α-synuclein干预细胞,同时设置α-synuclein组(单纯α-synuclein干预)和α-synuclein+ML132组,检测细胞焦亡的水平。结果:α-synuclein的IC50值为50 nmol/L。α-synuclein干预后细胞焦亡数目显著增高,TUNEL染色显示阳性细胞数目多于Con组,免疫荧光染色结果显示细胞中GSDMD-N的表达水平上调,细胞中NLRP3、ASC、GSDMD-N、Caspase-1的表达水平显著高于Con组,而GSDMD水平下调,同时细胞培养基中IL-18、IL-1β的水平上调。Caspase-1抑制剂处理后,50 nmol/L的α-synuclein干预后,细胞焦亡水平显著低于α-synuclein组,同时免疫荧光染色结果显示GSDMD-N的水平下调,细胞中NLRP3、ASC、GSDMD-N、Caspase-1的表达水平显著低于α-synuclein组,而GSDMD水平上调,培养基中IL-18和IL-1β的水平下调。结论:α-synuclein可以通过激活NLRP3炎性小体活化继发神经细胞焦亡的发生,在帕金森病的发生发展中具有一定的作用。  相似文献   
24.
Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) “cell-autonomous”. Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its “dead” kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.  相似文献   
25.
26.
In Parkinson’s disease, aggregates of α-synuclein within Lewy bodies and Lewy neurites represent neuropathological hallmarks. However, the cellular and molecular mechanisms triggering oligomeric and fibrillary α-synuclein aggregation are not fully understood. Recent evidence indicates that oxidative stress induced by metal ions and post-translational modifications such as phosphorylation, ubiquitination, nitration, glycation, and SUMOylation affect α-synuclein conformation along with its aggregation propensity and neurotoxic profiles. In addition, proteolytic cleavage of α-synuclein by specific proteases results in the formation of a broad spectrum of fragments with consecutively altered and not fully understood physiological and/or pathological properties. In the present review, we summarize the current knowledge on proteolytical α-synuclein cleavage by neurosin, calpain-1, cathepsin D, and matrix metalloproteinase-3 in health and disease. We also shed light on the contribution of the same enzymes to proteolytical processing of pathogenic proteins in Alzheimer’s disease and report potential cross-disease mechanisms of pathogenic protein aggregation.  相似文献   
27.
Parkinson’s disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells.  相似文献   
28.
In synucleinopathies, while motor symptoms are thought to be attributed to the accumulation of misfolded α-synuclein (αSyn) in nigral dopaminergic neurons, it remains to be elucidated how cognitive decline arises. Here, we investigated the effects of distinct αSyn strains on cognition and the related neuropathology in the medial septum/diagonal band (MS/DB), a key region for cognitive processing. Bilateral injection of αSyn fibrils into the dorsal striatum potently impaired cognition in mice. The cognitive decline was accompanied by accumulation of phosphorylated αSyn at Ser129 and reduction of gamma-aminobutyric acid (GABA)-ergic but not cholinergic neurons in the MS/DB. Since we have demonstrated that fatty acid-binding protein 3 (FABP3) is critical for αSyn neurotoxicity in nigral dopaminergic neurons, we investigated whether FABP3 also participates in αSyn pathology in the MS/DB and cognitive decline. FABP3 was highly expressed in GABAergic but rarely in cholinergic neurons in the MS/DB. Notably, Fabp3 deletion antagonized the accumulation of phosphorylated αSyn, decrease in GABAergic neurons, and cognitive impairment caused by αSyn fibrils. Overall, the present study indicates that FABP3 mediates αSyn neurotoxicity in septal GABAergic neurons and the resultant cognitive impairment, and that FABP3 in this subpopulation could be a therapeutic target for dementia in synucleinopathies.  相似文献   
29.
Small heat shock proteins (HSPs), such as HSP27, are ubiquitously expressed molecular chaperones and are essential for cellular homeostasis. The major functions of HSP27 include chaperoning misfolded or unfolded polypeptides and protecting cells from toxic stress. Dysregulation of stress proteins is associated with many human diseases including neurodegenerative diseases, such as Parkinson’s disease (PD). PD is characterized by the presence of aggregates of α-synuclein in the central and peripheral nervous system, which induces the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and in the autonomic nervous system. Autonomic dysfunction is an important non-motor phenotype of PD, which includes cardiovascular dysregulation, among others. Nowadays, the therapies for PD focus on dopamine (DA) replacement. However, certain non-motor symptoms with a great impact on quality of life do not respond to dopaminergic drugs; therefore, the development and testing of new treatments for non-motor symptoms of PD remain a priority. Since small HSP27 was shown to prevent α-synuclein aggregation and cytotoxicity, this protein might constitute a suitable target to prevent or delay the motor and non-motor symptoms of PD. In the first part of our review, we focus on the cardiovascular dysregulation observed in PD patients. In the second part, we present data on the possible role of HSP27 in preventing the accumulation of amyloid fibrils and aggregated forms of α-synuclein. We also include our own studies, highlighting the possible protective cardiac effects induced by L-DOPA treatment through the enhancement of HSP27 levels and activity.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号