首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49841篇
  免费   1634篇
  国内免费   1277篇
电工技术   1477篇
技术理论   1篇
综合类   1923篇
化学工业   9639篇
金属工艺   5322篇
机械仪表   2109篇
建筑科学   1420篇
矿业工程   459篇
能源动力   2194篇
轻工业   2061篇
水利工程   155篇
石油天然气   978篇
武器工业   239篇
无线电   4725篇
一般工业技术   8551篇
冶金工业   1672篇
原子能技术   839篇
自动化技术   8988篇
  2024年   199篇
  2023年   1359篇
  2022年   1078篇
  2021年   1485篇
  2020年   1427篇
  2019年   1340篇
  2018年   1272篇
  2017年   1492篇
  2016年   1873篇
  2015年   2104篇
  2014年   3084篇
  2013年   4407篇
  2012年   2483篇
  2011年   3792篇
  2010年   3093篇
  2009年   3218篇
  2008年   2695篇
  2007年   2823篇
  2006年   2398篇
  2005年   2063篇
  2004年   1799篇
  2003年   1783篇
  2002年   1525篇
  2001年   841篇
  2000年   650篇
  1999年   527篇
  1998年   388篇
  1997年   334篇
  1996年   222篇
  1995年   154篇
  1994年   155篇
  1993年   133篇
  1992年   115篇
  1991年   75篇
  1990年   71篇
  1989年   56篇
  1988年   29篇
  1987年   26篇
  1986年   30篇
  1985年   35篇
  1984年   30篇
  1983年   14篇
  1982年   11篇
  1981年   9篇
  1980年   13篇
  1979年   11篇
  1977年   9篇
  1976年   3篇
  1975年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
21.
The use of a Pt-based catalyst was evaluated for autocatalytic hydrogen recombination. The Pt was supported on a mixture of Ce-, Zr- and Y-oxides (CZY) to yield nanosized Pt particles. The Pt/CZY/AAO catalyst was then prepared by the spray-deposition of the Pt/CZY intermediate onto an anodized aluminium oxide (AAO) layer on a metallic aluminum core. The Pt/CZY/AAO catalyst (3 × 1 cm) was evaluated for hydrogen combustion (1–8 vol% hydrogen in the air) in a recombiner section testing station. The thermal distribution throughout the catalyst surface was investigated using an infrared camera. The maximum temperature gradient (ΔT) for the examined hydrogen concentrations did not exceed 36 °C. The Pt/CZY/AAO catalyst was also evaluated for prolonged hydrogen combustion duration to assess its durability. An average combustion temperature of 239.0 ± 10.0 °C was maintained for 53 days of catalytic hydrogen combustion, suggesting that there was limited, or no, catalyst deactivation. Finally, a Pt/CZY/AAO catalytic plate (14.0 × 4.5 cm) was prepared to investigate the thermal distribution. An average surface temperature of 212.5 °C and a maximum ΔT of 5.4 °C was obtained throughout the catalyst surface at a 3 vol% hydrogen concentration.  相似文献   
22.
This paper considers the shared path following control of an unmanned ground vehicle by a single person. A passive measure of human intent is used to blend the human and machine inputs in a mixed initiative approach. The blending law is combined with saturated super-twisting sliding mode speed and heading controllers, so that exogenous disturbances can be counteracted via equivalent control. It is proven that when the proposed blending law is used, the combined control signals from both the human and automatic controller respect the actuator magnitude constraints of the machine. To demonstrate the approach, shared control experiments are performed using an unmanned ground vehicle, which follows a lawn mower pattern shaped path.  相似文献   
23.
Developing non-precious metal-based catalysts as the substitution of precious catalysts (Pt/C) in oxygen reduction reaction (ORR) is crucial for energy devices. Herein, a template and organic solvent-free method was adopted to synthesize Fe, B, and N doped nanoflake-like carbon materials (Fe/B/N–C) by pyrolysis of monoclinic ZIF-8 coated with iron precursors and boric acid. Benefiting from introducing B into Fe–N–C, the regulated electron cloud density of Fe-Nx sites enhance the charge transfer and promotes the ORR process. The as-synthesized Fe/B/N–C electrocatalyst shows excellent ORR activity of a half-wave potential (0.90 V vs 0.87 V of Pt/C), together with superior long-term stability (95.5% current density retention after 27 h) in alkaline media and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.74 V vs 0.82 V of Pt/C) in an acidic electrolyte. A Zn-air battery assembled with Fe/B/N–C as ORR catalyst delivers a higher open-circuit potential (1.47 V), specific capacity (759.9 mA h g?1Zn at 10 mA cm?2), peak power density (62 mW cm?2), as well as excellent durability (5 mA cm?2 for more than 160 h) compared to those with commercial Pt/C. This work provides an effective strategy to construct B doped Fe–N–C materials as nonprecious ORR catalyst. Theoretical calculations indicate that introduction of B could induce Fe-Nx species electronic configuration and is favorable for activation of OH1 intermediates to promote ORR process.  相似文献   
24.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
25.
26.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
27.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
28.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
29.
Ammonia is considered as a promising hydrogen or energy carrier. Ammonia absorption or adsorption is an important aspect for both ammonia removal, storage and separation applications. To these ends, a wide range of solid and liquid sorbents have been investigated. Among these, the deep eutectic solvent (DES) is emerging as a promising class of ammonia absorbers. Herein, we report a novel type of DES, i.e., metal-containing DESs for ammonia absorption. Specifically, the NH3 absorption capacity is enhanced by ca. 18.1–36.9% when a small amount of metal chlorides, such as MgCl2, MnCl2 etc., are added into a DES composed of resorcinol (Res) and ethylene glycol (EG). To our knowledge, the MgCl2/Res/EG (0.1:1:2) DES outperforms most of the reported DESs. The excellent NH3 absorption performances of metal–containing DESs have been attributed to the synergy of Lewis acid–base and hydrogen bonding interactions. Additionally, good reversibility and high NH3/CO2 selectivity are achieved over the MgCl2/Res/EG (0.1:1:2) DES, which enables it to be a potential NH3 absorber for further investigations.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号