An unexpected reaction of cinnamylanilines was achieved through the radical cation salt‐induced aerobic oxidation of sp3 C H bonds, providing a series of 2‐arylquinolines. The mechanistic study shows that the cinnamylaniline was oxidized to an imine, which was attacked by the aniline generated through decomposition of the corresponding imine. After further intramolecular cyclization and aromatization, 2‐arylquinolines were obtained. This reaction provides a new method to construct 2‐arylquinolines from readily accessible starting materials.
With molybdenum hexacarbonyl as the carbon monoxide source, a general palladium‐catalyzed carbonylative transformation of the C−H bond on aromatic rings to produce esters has been developed. Good yields of the corresponding products have been obtained with wide functional group tolerance and excellent regioselectivity. A variety of aliphatic alcohols are suitable reactants here.
Membrane technology features inspiring excellence from numerous separation technologies for CO2 capture from post-combustion gas. Polyvinylamine (PVAm)-based facilitated transport membranes show significantly high separation performance, which has been proven promising for industrial scale-up. However, commercialized PVAm with low molecular weight and excessive crystallinity is not available to prepare high-performance membranes. Herein, the synthesis process of PVAm was optimized by regulating polymerization and acidic hydrolytic conditions. The membranes based on PVAm with a molecular weight of 154 kDa and crystallinity of 11.37% display high CO2 permeance of 726 GPU and CO2/N2 selectivity of 55 at a feed gas pressure of 0.50 MPa. Furthermore, we established a PVAm synthesis reactor with an annual PVAm solution (1%(mass)) capacity of over 7000 kg and realized the scaled-up manufacture of both PVAm and composite membranes. 相似文献