首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   79篇
  国内免费   70篇
电工技术   99篇
综合类   64篇
化学工业   457篇
金属工艺   95篇
机械仪表   10篇
建筑科学   7篇
矿业工程   22篇
能源动力   45篇
轻工业   8篇
石油天然气   30篇
武器工业   1篇
无线电   66篇
一般工业技术   197篇
冶金工业   112篇
原子能技术   18篇
自动化技术   5篇
  2024年   6篇
  2023年   42篇
  2022年   37篇
  2021年   42篇
  2020年   38篇
  2019年   41篇
  2018年   41篇
  2017年   42篇
  2016年   34篇
  2015年   28篇
  2014年   50篇
  2013年   42篇
  2012年   57篇
  2011年   70篇
  2010年   51篇
  2009年   59篇
  2008年   52篇
  2007年   75篇
  2006年   70篇
  2005年   58篇
  2004年   52篇
  2003年   48篇
  2002年   42篇
  2001年   39篇
  2000年   36篇
  1999年   13篇
  1998年   16篇
  1997年   9篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1951年   3篇
排序方式: 共有1236条查询结果,搜索用时 46 毫秒
21.
Novel soft magnetic ferrite materials will play a crucial role in next-generation trillion-dollar sensor technologies related to 5G communications and internet of things as these materials can achieve improved wireless power/signal transfer efficiency with high operation frequency. In this work, Ni0.4Co0.25Zn0.35Fe2O4 ferrites with high permeability and low magnetic loss were prepared for RF and microwave device applications. Composition and microstructure control is crucial to obtain the desired magnetic and loss properties. CuO dopant (x = 0 wt% to 20 wt%) were employed during the synthesis of Ni0.4Co0.25Zn0.35Fe2O4 ferrite specimens to modify the microstructures, thus improving the magnetic properties of the ferrites. High value of measured relative permeability (μ’ of 4-10) and relatively low magnetic loss tangent ( of 0.01-0.1) has been achieved at frequency range between 100 and 800 MHz. Addition of CuO, especially up to 3 wt%, can cause a significant increase in permeability. Real part of the permeability of 3.87 and 10.9 has been achieved for undoped and 3 wt% CuO doped specimens, while noticeable reduction in magnetic losses has been observed for the doped sample measured at 400 MHz. The resonance frequency of synthesized ferrites has also been shifted into GHz range, when higher concentration of CuO dopants (>5 wt%) were employed.  相似文献   
22.
In this paper, we describe the preparation of a porous nanosheet-stacked NiCo2O4 composite electrode using a novel electrophoretic deposition (EPD) calcination method. The effects of the deposition time and voltage, and of the calcination temperature have been investigated. The microstructure of the deposited films in the electrodes before and after calcination has also been investigated. The electrocatalytic properties of the electrodes have been investigated using cyclic voltammetry and polarization curves. The electrode films produced using this new technique have a porous structure composed of stacked hexagonal NiCo2O4 nanosheets. The resulting electrodes exhibit good electrocatalytic properties for water electrolysis.  相似文献   
23.
LiNi0.5Mn1.5O4 spinels coated with various amounts of fumed silica have been synthesized and investigated as cathode materials for high-voltage lithium-ion batteries at the elevated temperature (55 °C). The morphology and structure of the coated LiNi0.5Mn1.5O4 samples were characterized by XRD, TEM and EDX. It was found that the surfaces of the coated LiNi0.5Mn1.5O4 samples are covered with a porous, amorphous, nanostructured SiO2 layer. The results of electrochemical experiments showed that the SiO2-coated LiNi0.5Mn1.5O4 samples display obviously improved capacity retention rate, and the improvement effect enhances with the increase of SiO2 content. The XPS results revealed that the surfaces of the SiO2-coated LiNi0.5Mn1.5O4 cathode materials have relatively low content of LiF, and this is mainly responsible for their improved electrochemical cycling stability.  相似文献   
24.
A synergetic effect in the catalytic activity has been found after palladium introduction in Mn–Al–O systems. The magnitude of the synergetic effect depends on the types of the oxidic manganese species: oxide Mn3O4, spinel (Mn, Mg)[Mn, Al]2O4 or hexaaluminate (Mn, Mg)LaAl11O19. The synergetic effect of Pd and manganese-containing compounds is observed only if palladium is introduced to the low-temperature precursor of the manganese alumina spinel or manganese hexaaluminate. The synergetic effect is not observed when high-temperature samples with formed spinel or hexaaluminate phases are modified with Pd.  相似文献   
25.
Spinel ferrite MnFe2O4 nanoparticles were synthesized by means of a nanocasting technique using a low-cost mesoporous silica gel as a hard template. The magnetic nanoparticles, of <10 nm diameter and with a surface area of around 100 m2/g, were tested as a heterogeneous Fenton catalyst for the decomposition of hydrogen peroxide under neutral and basic conditions. This catalyst shows a much higher activity than previous heterogeneous catalysts reported in the literature, which is mainly ascribed to its small particle size. Furthermore, the magnetic catalyst can be easily separated from the reaction medium by means of an external magnetic field. The effects of residual silica and the purity of the catalyst (hematite formation) on catalytic activity have been studied and correlated. The results obtained show this catalyst to be a suitable candidate for the removal of pollutants in wastewaters by means of the Fenton heterogeneous reaction.  相似文献   
26.
Lithium-deficient LiYMn2O4 spinels (LD-LiYMn2O4) with nominal composition (0.9 ≤ Y < 1) have been synthesized by melt impregnation from Mn2O3 and LiNO3 at temperatures ranging from 700 °C to 850 °C. X-ray diffraction data show that LD-LiYMn2O4 spinels are obtained as single phases in the range Y = 0.975-1 at 700 °C and 750 °C. Morphological characterization by transmission electron microscopy shows that the particle size of LD-LiYMn2O4 spinels increases on decreasing the Li-content. The influence of the Li-content and the synthesis temperature on the thermal and electrochemical behaviours has been systematically studied. Thermal analysis studies indicate that the temperature of the first thermal effect in the differential thermal analysis (DTA)/thermogravimetric (TG) curves, TC1, linearly increases on decreasing the Li-content. The electrochemical properties of LD-LiYMn2O4 spinels, determined by galvanostatic cycling, notably change with the synthesis conditions. So, the first discharge capacity, Qdisch., at C rate increases on rising the Li-content and the synthesis temperature. The sample Li0.975Mn2O4 synthesized at 700 °C has a Qdisch. = 123 mAh g−1 and a capacity retention of 99.77% per cycle. This LD-LiYMn2O4 sample had the best electrochemical characteristics of the series.  相似文献   
27.
Knowledge on the mechanical and thermophysical properties of ZnO·nAl2O3 is essential for practical applications. Based on the first-principles calculations and the bond valence method, the disordered spinel-type structure of ZnO·nAl2O3 (n = 1–4) was constructed to investigate the composition-dependent mechanical and thermophysical properties. The effects of cation substitution on the hardness, elastic modulus, thermal expansion, and thermal conductivity were revealed from the insights into the chemical bonds. At a higher n, the tetrahedral bond is stronger, manifested as its higher hardness and bulk modulus as well as smaller thermal expansion coefficient. Meanwhile, the octahedral bond is weaker, leading to the lower hardness and bulk modulus, along with the larger expansion coefficient. In consequence, the hardness and elastic moduli of ZnO·nAl2O3 are improved moderately while the expansion coefficient is decreased with the rise of n. Due to the different vibration characteristics of ZnIV and AlIV, the cation disorder in the 8a site provides the primary source of phonon scattering, resulting in the dramatic reduction of thermal conductivity as n increases. The understanding offers guidance on the application-oriented design of new oxide spinels.  相似文献   
28.
Two phase-based nanocomposites consisting of dielectric barium titanate (BaTiO3 or BTO) and magnetic spinel ferrite Co0.5Ni0.5Nb0.06Fe1.94O4 (CNNFO) have been synthesized through solid state route. Series of (BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites with x content of 0.00, 0.25, 0.50, 0.75, and 1.00 were considered. The structure has been examined via X-rays diffraction (XRD) and indicated the occurrence of both perovskite BTO and spinel CNNFO phases in various nanocomposites. A phase transition from tetragonal BTO structure to cubic structure occurs with inclusion of CNNFO phase. The average crystallites size of BTO phase decreases, whereas that for the CNNFO phase increases with increasing x in various nanocomposites. The morphological observations revealed that the porosity is highly reduced, and the connectivity between grains is enhanced with increasing x content. The optical properties have been investigated by UV−vis diffuse reflectance spectroscopy. The deduced band gap energy (Eg) value is found to reduce with increasing the content of spinel ferrite phase. The magnetic as well as the dielectric properties were also investigated. The analysis showed that CNNFO ferrite phase greatly affects the magnetic properties and dielectric response of BTO material. The obtained findings can be useful to enhance the performances of magneto-dielectric composite-based systems.  相似文献   
29.
Spinel LiNi0.05Mn1.95O4 cathode material for lithium ion batteries was synthesized by solid-state reaction from coprecipitated Ni-Mn hydroxide precursors and characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and galvanostatic charge-discharge tests. It is found that LiNi0.05Mn1.95O4 powder has an ordered cubic spinel phase (space group Fd3m) and exhibits superior rate capability. After 450 cycles, the LiNi0.05Mn1.95O4/carbonaceous mesophase spheres(CMS) Li-ion batteries can retain 96.0% and 93.3% capacity at 5C and 10C charge/discharge rate, respectively, compared with 85.3% (5C) and 80.5% (10C) retention for LiMn204 batteries. However, the initial discharge capacity of LiNi0.05Mn1.95O4/CMS batteries at 1C charge/discharge rate (96.20 mA.h/g) is slightly lower than that of the LiMn2O4 batteries (100.98 mA.h/g) due to the increased average oxidation state of Mn inLiNi0.05Mn1.95O4.  相似文献   
30.
1 Introduction The cathode material plays an important role in the performance of lithium ion batteries. Lithium transition metal compounds with layered and spinel structure are favourites among cathode materials for lithium rechargeable batteries. In thi…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号