全文获取类型
收费全文 | 476篇 |
免费 | 2篇 |
国内免费 | 20篇 |
专业分类
综合类 | 2篇 |
化学工业 | 97篇 |
金属工艺 | 30篇 |
机械仪表 | 16篇 |
能源动力 | 5篇 |
轻工业 | 5篇 |
无线电 | 22篇 |
一般工业技术 | 317篇 |
冶金工业 | 1篇 |
原子能技术 | 1篇 |
自动化技术 | 2篇 |
出版年
2023年 | 6篇 |
2022年 | 10篇 |
2021年 | 13篇 |
2020年 | 11篇 |
2019年 | 11篇 |
2018年 | 11篇 |
2017年 | 17篇 |
2016年 | 18篇 |
2015年 | 16篇 |
2014年 | 30篇 |
2013年 | 38篇 |
2012年 | 33篇 |
2011年 | 49篇 |
2010年 | 26篇 |
2009年 | 25篇 |
2008年 | 26篇 |
2007年 | 38篇 |
2006年 | 32篇 |
2005年 | 25篇 |
2004年 | 18篇 |
2003年 | 8篇 |
2002年 | 15篇 |
2001年 | 3篇 |
2000年 | 8篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1995年 | 1篇 |
1989年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有498条查询结果,搜索用时 21 毫秒
61.
Advances in our understanding of stem cell interactions with their environment are leading to the development of new materials‐based approaches to control stem cell behavior toward cellular culture and tissue regeneration applications. Materials can provide cues based on chemistry, mechanics, structure, and molecule delivery that control stem cell fate decisions and matrix formation. These approaches are helping to advance clinical translation of a range of stem cell types through better expansion techniques and scaffolding for use in tissue engineering approaches for the regeneration of many tissues. With this in mind, this progress report covers basic concepts and recent advances in the use of materials for manipulating stem cells. 相似文献
62.
Recently there has been interest in employing degradable metallic implants for internal fixation in bone fracture healing. The major purpose of using degradable implants is to avoid a second surgery for implant removal when bone healing has completed. However, the corrosion rate of Mg in vivo is too high. Thus increasing the corrosion resistance of Mg is the key problem to address in the development of degradable Mg implants. One possible route is by way of surface treatment, which would lower the corrosion rate at the initial phase of bone healing, the period during which the implant provides mechanical support for the broken bone. In the present study cerium oxide coating was prepared on pure Mg by cathodic deposition in cerium nitrate solution followed by hydrothermal treatment. The coated samples were characterized by SEM, EDS and XRD. The corrosion resistance in Hanks’ solution (a simulated body fluid) was studied using polarization method and electrochemical impedance spectroscopy (EIS). The corrosion resistance of cerium oxide coated Mg in Hanks’ solution at 37 °C and pH 7.4 was higher than that of bare Mg by about two orders of magnitude. 相似文献
63.
A novel composite nanofiber of poly(lactic acid) (PLA) incorporated with the nanocomponent of bioactive glass was exploited using an electrospinning method. Small concentrations of the bioactive glass phase added up to 10% facilitated the generation of a nanofibrous matrix with hundreds of nanometers in diameter without a formation of beads. The addition of the bioactive glass phase greatly enhanced the in vitro apatite formation on the nanofiber surface under a body simulating medium. Osteoblastic cells were demonstrated to adhere well on the composite nanofiber and grow actively with culturing time, suggesting its usefulness as a supporting matrix for the hard tissue regeneration. 相似文献
64.
The hydroxylapatite nanoparticle chains were firstly synthesized by self-assembly with sodium polymethacrylic acid as the template. These high-quality HAP nanoparticle chains showed well-defined nanoscaled structures and regular morphology. The nanoparticle chains were 1.4-2 μm in length and the nanoparticles were about 45 nm in diameter. The structure of products has been studied with XRD and FT-IR spectrum. The forming conditions and mechanism of the products have been investigated. This synthesis method is facile and effective. The products will have potential applications in many fields such as biosensor, and biomimetic bone materials etc. The experimental outcomes present here will have potential values in crystal engineering research and practical applications. 相似文献
65.
Željka Jovanović Jasmina StojkovskaBojana Obradović Vesna Mišković-Stanković 《Materials Chemistry and Physics》2012
An innovative method was developed for production of alginate hydrogel microbeads incorporated with silver nanoparticles (AgNPs) based on electrochemical synthesis followed by electrostatic extrusion. AgNPs were synthesized galvanostatically at different values of AgNO3 concentration in the initial solution (0.5–3.9 mM), current density (5–50 mA cm−2), and implementation time (0.5–10 min). Increase in all of these parameters increased the concentration of AgNPs in alginate solution and was confirmed by TEM analysis and UV–vis spectroscopy. Cyclic voltammetry studies and Fourier transform infrared spectroscopy proved the alginate to be a good capping agent for the electrochemical synthesis of silver nanoparticles, due to coordination bonding between hydroxyl and ether groups, as well as ring oxygen atoms in uronic acid residues of alginate molecules, and Ag nanoparticles. Ag/alginate colloid solution was used for production of uniform hydrogel microbeads (with diameter of 487.75 ± 16.5 μm) by electrostatic extrusion technique. UV–vis spectroscopy confirmed retention and entrapment of AgNPs in microbeads during the production process. Alginate microbeads incorporated with AgNPs are attractive as biocompatible carriers and/or efficient donors of AgNPs as active components especially for potential biomedical applications, which was demonstrated by the antibacterial activity against Staphylococcus aureus. 相似文献
67.
Green isolation and physical modification of pineapple stem waste starch as pharmaceutical excipient
Annisa Rahma Melissa Adriani Puji Rahayu Raymond R. Tjandrawinata Heni Rachmawati 《Drug development and industrial pharmacy》2019,45(6):1029-1037
The waste of inedible parts of pineapple, particularly in tropical countries, contributes to environmental burden. This study aimed to utilize pineapple stem waste as a source of starch-based pharmaceutical excipient. The starch was isolated from pineapple stem waste using a simple process without applying harsh chemicals. The isolated starch (PSS) was then physically modified through gelatinization and spray drying to improve its physical properties. Starch characteristics were identified by FTIR, TGA, and XRD analysis. The SEM imaging showed morphological change with reduced surface roughness due to physical modification of the starch. Decreased crystallinity of modified starch (MPS) was confirmed by our XRD results: the peaks of A-type crystalline at 2θ of 13°, 15°, 18°, and 23° were present in PSS, yet mostly absent in MPS. Thermogravimetric analysis showed that MPS behaved differently from PSS and the degradation events occurred at lower temperature. When the starch was spray-dried without prior gelatinization process, the physicochemical characteristics of spray-dried starch resembled untreated starch. Moisture content in PSS (10.66%) decreased after gelatinization to 7.3%. Potential use of MPS was demonstrated by its powder flowability (Student’s t test, p?<?0.05), swelling capacity (Student’s t test, p?<?0.05), and compaction profile. In summary, our findings demonstrated that modified pineapple starch showed better physical characteristics and quite promising as a tablet binder and disintegrant. 相似文献
68.
《工程(英文)》2018,4(2):286-290
Tissue engineering, which involves the creation of new tissue by the deliberate and controlled stimulation of selected target cells through a systematic combination of molecular and mechanical signals, usually involves the assistance of biomaterials-based structures to deliver these signals and to give shape to the resulting tissue mass. The specifications for these structures, which used to be described as scaffolds but are now more correctly termed templates, have rarely been defined, mainly because this is difficult to do. Primarily, however, these specifications must relate to the need to develop the right microenvironment for the cells to create new tissue and to the need for the interactions between the cells and the template material to be consistent with the demands of the new viable tissues. These features are encompassed by the phenomena that are collectively called biocompatibility. However, the theories and putative mechanisms of conventional biocompatibility (mostly conceived through experiences with implantable medical devices) are inadequate to describe phenomena in tissue-engineering processes. The present author has recently redefined biocompatibility in terms of specific materials- and biology-based pathways; this opinion paper places tissue-engineering biocompatibility mechanisms in the context of these pathways. 相似文献
69.
《材料与设计》2015
A simple method to fabricate porous titanium was developed, with which the graded microporous titanium alloys could be prepared by simply casting. The in-situ formed graded microporous structure and its effect on the mechanical properties of the titanium alloys were investigated. The results indicated that the mechanical properties of such graded microporous titanium alloys were superior to the porous titanium fabricated by other methods. This work provides a bright prospect for the production of graded porous titanium alloys with low-cost and high properties. This method can also be applied to synthesize other porous metallic biomaterials. 相似文献
70.
Nowadays bioactive glasses are diffused in medical practice due to their excellent bioactivity. However high temperature treatments, which are commonly required in several processing routes, may induce the glass to crystallize into a glass-ceramic, with possible negative effects on its bioactivity. In this work a new bioactive glass composition, inspired by the widely used Bioglass® 45 S5, was formulated by increasing the calcium content and substituting the sodium oxide with potassium oxide. The novel glass can be treated at a relatively low temperature (800 °C) and it is characterized by a reduced tendency to crystallize with excellent effects in terms of bioactivity, according to in vitro tests. Therefore, the new composition opens intriguing scenarios whenever a thermal treatment is required to apply or to sinter the glass, such as in the production of scaffolds or the deposition of coatings. 相似文献