首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1396篇
  免费   89篇
  国内免费   61篇
电工技术   33篇
综合类   33篇
化学工业   476篇
金属工艺   86篇
机械仪表   26篇
建筑科学   125篇
矿业工程   15篇
能源动力   23篇
轻工业   92篇
水利工程   4篇
石油天然气   42篇
武器工业   2篇
无线电   62篇
一般工业技术   289篇
冶金工业   27篇
原子能技术   18篇
自动化技术   193篇
  2024年   7篇
  2023年   104篇
  2022年   284篇
  2021年   476篇
  2020年   162篇
  2019年   29篇
  2018年   12篇
  2017年   12篇
  2016年   12篇
  2015年   17篇
  2014年   27篇
  2013年   22篇
  2012年   42篇
  2011年   42篇
  2010年   19篇
  2009年   43篇
  2008年   37篇
  2007年   44篇
  2006年   31篇
  2005年   11篇
  2004年   22篇
  2003年   19篇
  2002年   17篇
  2001年   14篇
  2000年   9篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1974年   1篇
排序方式: 共有1546条查询结果,搜索用时 0 毫秒
31.
(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due to its simplicity of usage, quick learning speed, and great generalization performances. The number of hidden neurons in ELM is set to 2000. Ten runs of 10-fold cross-validation are implemented to generate impartial results. (Result) For the 296-image dataset, our SNELM model attains a sensitivity of 96.35 ± 1.50%, a specificity of 96.08 ± 1.05%, a precision of 96.10 ± 1.00%, and an accuracy of 96.22 ± 0.94%. For the 640-image dataset, the SNELM attains a sensitivity of 96.00 ± 1.25%, a specificity of 96.28 ± 1.16%, a precision of 96.28 ± 1.13%, and an accuracy of 96.14 ± 0.96%. (Conclusion) The proposed SNELM model is successful in diagnosing COVID-19. The performances of our model are higher than seven state-of-the-art COVID-19 recognition models.  相似文献   
32.
Coronavirus disease 2019 (Covid-19) is a life-threatening infectious disease caused by a newly discovered strain of the coronaviruses. As by the end of 2020, Covid-19 is still not fully understood, but like other similar viruses, the main mode of transmission or spread is believed to be through droplets from coughs and sneezes of infected persons. The accurate detection of Covid-19 cases poses some questions to scientists and physicians. The two main kinds of tests available for Covid-19 are viral tests, which tells you whether you are currently infected and antibody test, which tells if you had been infected previously. Routine Covid-19 test can take up to 2 days to complete; in reducing chances of false negative results, serial testing is used. Medical image processing by means of using Chest X-ray images and Computed Tomography (CT) can help radiologists detect the virus. This imaging approach can detect certain characteristic changes in the lung associated with Covid-19. In this paper, a deep learning model or technique based on the Convolutional Neural Network is proposed to improve the accuracy and precisely detect Covid-19 from Chest Xray scans by identifying structural abnormalities in scans or X-ray images. The entire model proposed is categorized into three stages: dataset, data pre-processing and final stage being training and classification.  相似文献   
33.
34.
With the increasing and rapid growth rate of COVID-19 cases, the healthcare scheme of several developed countries have reached the point of collapse. An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients, in such a way that positive patient can be treated and isolated. A chest radiology image-based diagnosis scheme might have several benefits over traditional approach. The accomplishment of artificial intelligence (AI) based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems. This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19 Monitoring System (IFFA-DTLMS). The proposed IFFA-DTLMS model majorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs. To attain this, the presented IFFA-DTLMS model primarily applies densely connected networks (DenseNet121) model to generate a collection of feature vectors. In addition, the firefly algorithm (FFA) is applied for the hyper parameter optimization of DenseNet121 model. Moreover, autoencoder-long short term memory (AE-LSTM) model is exploited for the classification and identification of COVID19. For ensuring the enhanced performance of the IFFA-DTLMS model, a wide-ranging experiments were performed and the results are reviewed under distinctive aspects. The experimental value reports the betterment of IFFA-DTLMS model over recent approaches.  相似文献   
35.
The diagnosis of COVID-19 requires chest computed tomography (CT). High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease, so it is of clinical importance to study super-resolution (SR) algorithms applied to CT images to improve the resolution of CT images. However, most of the existing SR algorithms are studied based on natural images, which are not suitable for medical images; and most of these algorithms improve the reconstruction quality by increasing the network depth, which is not suitable for machines with limited resources. To alleviate these issues, we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution (RFAFN). Specifically, we design a contextual feature extraction block (CFEB) that can extract CT image features more efficiently and accurately than ordinary residual blocks. In addition, we propose a feature-weighted cascading strategy (FWCS) based on attentional feature fusion blocks (AFFB) to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information. Finally, we suggest a global hierarchical feature fusion strategy (GHFFS), which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels. Numerous experiments show that our method performs better than most of the state-of-the-art (SOTA) methods on the COVID-19 chest CT dataset. In detail, the peak signal-to-noise ratio (PSNR) is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at SR compared to the suboptimal method, but the number of parameters and multi-adds are reduced by 22K and 0.43G, respectively. Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19.  相似文献   
36.
37.
This paper introduces an alternative formulation of the Kalman-Yakubovich-Popov (KYP) Lemma, relating an infinite dimensional Frequency Domain Inequality (FDI) to a pair of finite dimensional Linear Matrix Inequalities (LMI). It is shown that this new formulation encompasses previous generalizations of the KYP Lemma which hold in the case the coefficient matrix of the FDI does not depend on frequency. In addition, it allows the coefficient matrix of the frequency domain inequality to vary affinely with the frequency parameter. One application of this results is illustrated in an example of computing upper bounds to the structured singular value with frequency-dependent scalings.  相似文献   
38.
For a positive integer d, an L(d,1)-labeling f of a graph G is an assignment of integers to the vertices of G such that |f(u)−f(v)|?d if uvE(G), and |f(u)−f(v)|?1 if u and u are at distance two. The span of an L(d,1)-labeling f of a graph is the absolute difference between the maximum and minimum integers used by f. The L(d,1)-labeling number of G, denoted by λd,1(G), is the minimum span over all L(d,1)-labelings of G. An L(d,1)-labeling of a graph G is an L(d,1)-labeling of G which assigns different labels to different vertices. Denote by the L(d,1)-labeling number of G. Georges et al. [Discrete Math. 135 (1994) 103-111] established relationship between the L(2,1)-labeling number of a graph G and the path covering number of Gc, the complement of G. In this paper we first generalize the concept of the path covering of a graph to the t-group path covering. Then we establish the relationship between the L(d,1)-labeling number of a graph G and the (d−1)-group path covering number of Gc. Using this result, we prove that and for bipartite graphs G can be computed in polynomial time.  相似文献   
39.
This article is about testing the equality of several normal means when the variances are unknown and arbitrary, i.e., the set up of the one-way ANOVA. Even though several tests are available in the literature, none of them perform well in terms of Type I error probability under various sample size and parameter combinations. In fact, Type I errors can be highly inflated for some of the commonly used tests; a serious issue that appears to have been overlooked. We propose a parametric bootstrap (PB) approach and compare it with three existing location-scale invariant tests—the Welch test, the James test and the generalized F (GF) test. The Type I error rates and powers of the tests are evaluated using Monte Carlo simulation. Our studies show that the PB test is the best among the four tests with respect to Type I error rates. The PB test performs very satisfactorily even for small samples while the Welch test and the GF test exhibit poor Type I error properties when the sample sizes are small and/or the number of means to be compared is moderate to large. The James test performs better than the Welch test and the GF test. It is also noted that the same tests can be used to test the significance of the random effect variance component in a one-way random model under unequal error variances. Such models are widely used to analyze data from inter-laboratory studies. The methods are illustrated using some examples.  相似文献   
40.
双频法在浮地交流电网绝缘故障定位中的应用   总被引:6,自引:1,他引:6  
针对浮地交流电网,提出了用双频法对电网绝缘故障支路定位的方案,分析了对浮地电网注入低频信号后的漏电流特性,给出了从包含复杂频率成分的信号中提取注入频率电量的方法,注入频率的选择直接影响到双频法应用于电网绝缘故障支路定位的效果,在给定注入信号频率的选定原则基础上,根据实际情况,确定了注入信号频率的可选择范围,通过现场实际应用表明,该方案是可行的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号