首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14731篇
  免费   298篇
  国内免费   315篇
电工技术   120篇
综合类   213篇
化学工业   5760篇
金属工艺   680篇
机械仪表   311篇
建筑科学   539篇
矿业工程   79篇
能源动力   2565篇
轻工业   332篇
水利工程   20篇
石油天然气   323篇
武器工业   19篇
无线电   398篇
一般工业技术   3244篇
冶金工业   284篇
原子能技术   167篇
自动化技术   290篇
  2024年   29篇
  2023年   262篇
  2022年   412篇
  2021年   436篇
  2020年   431篇
  2019年   375篇
  2018年   367篇
  2017年   394篇
  2016年   383篇
  2015年   432篇
  2014年   678篇
  2013年   790篇
  2012年   598篇
  2011年   1307篇
  2010年   989篇
  2009年   947篇
  2008年   906篇
  2007年   815篇
  2006年   962篇
  2005年   757篇
  2004年   610篇
  2003年   551篇
  2002年   466篇
  2001年   215篇
  2000年   203篇
  1999年   214篇
  1998年   175篇
  1997年   137篇
  1996年   114篇
  1995年   117篇
  1994年   67篇
  1993年   36篇
  1992年   28篇
  1991年   36篇
  1990年   28篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   4篇
  1982年   1篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
We report the original design of a new type of electronic nose (e-nose) consisting of only five sensors made of hierarchically structured conductive polymer nanocomposites (CPC). Each sensor benefits from both the exceptional electrical properties of carbon nanotubes (CNT) used to build the conductive architecture and the spray layer by layer (sLbL) assembly technique, which provides the transducers with a highly specific 3D surface structure. Excellent sensitivity and selectivity were obtained by optimizing the amount of CNT with five different polymer matrices: poly(caprolactone) (PCL), poly(lactic acid) (PLA), poly(carbonate) (PC), poly(methyl methacrylate) (PMMA) and a biobased polyester (BPR). The ability of the resulting e-nose to detect nine organic solvent vapours (isopropanol, tetrahydrofuran, dichloromethane, n-heptane, cyclohexane, methanol, ethanol, water and toluene), as well as biomarkers for lung cancer detection in breath analysis, has been demonstrated. Principal component analysis (PCA) proved to be an excellent pattern recognition tool to separate vapour clusters.  相似文献   
82.
Bryophytes are the dominant ground cover vegetation layer in many boreal forests and in some of these forests the net primary production of bryophytes exceeds the overstory. Therefore it is necessary to quantify their spatial coverage and species composition in boreal forests to improve boreal forest carbon budget estimates. We present results from a small exploratory test using airborne lidar and multispectral remote sensing data to estimate the percentage of ground cover for mosses in a boreal black spruce forest in Manitoba, Canada. Multiple linear regression was used to fit models that combined spectral reflectance data from CASI and indices computed from the SLICER canopy height profile. Three models explained 63-79% of the measured variation of feathermoss cover while three models explained 69-92% of the measured variation of sphagnum cover. Root mean square errors ranged from 3-15% when predicting feathermoss, sphagnum, and total moss ground cover. The results from this case study warrant further testing for a wider range of boreal forest types and geographic regions.  相似文献   
83.
Estimation of photosynthetic light use efficiency (ε) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing ε from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based ε measurements to MODIS. First, EC-measured ε values were “translated” into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r2 = 0.74, p < 0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r2 = 0.58, p < 0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of ε. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period.  相似文献   
84.
This paper presents a novel signal processing technique for a square wave temperature modulated carbon black/polymer composite sensor. The technique consists of only two mathematical operations: summing the off- and on-transients of the conductance signals, and subtracting the steady-state conductance signal. The technique has been verified through its application to a carbon black/polyvinylpyrrolidone composite chemoresistor. Identification of water, methanol and ethanol vapours was successfully demonstrated using the peak time of the resultant curves. Furthermore, quantification of those vapours was found to be possible using the height of the peak heights, which was linearly proportional to concentration. The technique does not require zero-gas calibration and thus is superior to previously reported techniques.  相似文献   
85.
Characterizing 3D vegetation structure from space: Mission requirements   总被引:1,自引:0,他引:1  
Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth's sustainability.To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that:
(1)
Current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates.
(2)
The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1 km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1 km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization.
We also show from the literature that lidar profile samples together with wall-to-wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein.  相似文献   
86.
从气体P-V-T性质论证了钢瓶的充装系数对于压力的影响。从而得出:严格控制液体二氧化碳的充装系数是确保二氧化碳钢瓶充装、贮存、运输及使用安全的关键。  相似文献   
87.
Low carbon footprint energy sources such as solar and wind power typically suffer from unpredictable or limited availability. By globally distributing a number of these renewable sources, these effects can largely be compensated for. We look at the feasibility of this approach for powering already distributed data centers in order to operate at a reduced total carbon footprint. From our study we show that carbon footprint reductions are possible, but that these are highly dependent on the approach and parameters involved. Especially the manufacturing footprint and the geographical region are critical parameters to consider. Deploying additional data centers can help in reducing the total carbon footprint, but substantial reductions can be achieved when data centers with nominal capacity well below maximum capacity redistribute processing to sites based on renewable energy availability.  相似文献   
88.
Multi-walled carbon nanotubes (MWNTs) were used to prepare natural rubber (NR) nanocomposites. Our first efforts to achieve nanostructures in MWNTs/NR nanocomposites were formed by incorporating carbon nanotubes in a polymer solution and subsequently evaporating the solvent. Using this technique, nanotubes can be dispersed homogeneously in the NR matrix in an attempt to increase the mechanical properties of these nanocomposites. The properties of the nanocomposites such as tensile strength, tensile modulus, elongation at break and hardness were studied. Mechanical test results show an increase in the initial modulus for up to 12 times in relation to pure NR. In addition to mechanical testing, the dispersion state of the MWNTs into NR studied by Transmission Electron Microscopy (TEM) in order to understand the morphology of the resulting system  相似文献   
89.
This paper presents a theoretical model to simulate the behaviour of RC beams strengthened with multilayered CFRP matrix allowing for inter-layer slip. An element of the composite beam is assumed to be subjected to a system of forces that satisfy equilibrium and compatibility of deformations. The inter-layer slip is allowed for by relating the differential strain at the interfaces between the CFRP layers and the concrete to the longitudinal shear flow at the corresponding interface through the shear stiffness of the adhesive layer. The basic differential equations are derived in terms of displacement variables and solved numerically using finite differences. The results of the numerical simulation included slip values along the interfaces, maximum slip values, stresses and strains and deflections. The results compare reasonably well with experimental findings.  相似文献   
90.
Carbon nanotubes (CNTs) were grown using a dc arc discharge process and relevant process parameters were investigated. Unlike the usual process in which a carbon anode is filled with metal catalyst powder, CNTs were prepared using a carbon cathode on which the metal catalyst had been deposited using an electroplating system. Various transition metals were investigated. The results show that multi walled carbon nanotubes (MWNTs) and single walled carbon nanotubes (SWNTs) can both be synthesized using this technique. SWNTs are detected in the soot sample collected around the cathode, whereas the MWNTs are detected mainly in the deposit sample collected from the central area of the cathode. The CNT yield varies depending on the catalyst used and the properties of a good catalyst are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号