首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18707篇
  免费   996篇
  国内免费   352篇
电工技术   151篇
综合类   453篇
化学工业   8403篇
金属工艺   742篇
机械仪表   370篇
建筑科学   609篇
矿业工程   96篇
能源动力   2562篇
轻工业   760篇
水利工程   31篇
石油天然气   330篇
武器工业   28篇
无线电   742篇
一般工业技术   3964篇
冶金工业   333篇
原子能技术   162篇
自动化技术   319篇
  2024年   37篇
  2023年   307篇
  2022年   380篇
  2021年   593篇
  2020年   570篇
  2019年   519篇
  2018年   575篇
  2017年   570篇
  2016年   554篇
  2015年   666篇
  2014年   919篇
  2013年   1102篇
  2012年   853篇
  2011年   1557篇
  2010年   1190篇
  2009年   1186篇
  2008年   1104篇
  2007年   1055篇
  2006年   1250篇
  2005年   930篇
  2004年   832篇
  2003年   724篇
  2002年   588篇
  2001年   302篇
  2000年   280篇
  1999年   254篇
  1998年   242篇
  1997年   177篇
  1996年   138篇
  1995年   139篇
  1994年   91篇
  1993年   60篇
  1992年   54篇
  1991年   81篇
  1990年   53篇
  1989年   36篇
  1988年   16篇
  1987年   17篇
  1986年   16篇
  1985年   17篇
  1984年   11篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2021,47(21):29949-29959
High carbon footprint of cement production is the major drawback of plain cement concrete resulting in environmental pollution. Geopolymer composites paste can be effectively used as an alternative to Portland cement in the construction industry for a sustainable environment. The demand for high-performance composites and sustainable construction is increasing day by day. Therefore, the present experimental program has endeavored to investigate the mechanical performance of basalt fiber-reinforced fly ash-based geopolymer pastes with various contents of nano CaCO3. The content of basalt fibers was fixed at 2% by weight for all specimens while the studied contents of nano CaCO3 were 0%, 1%, 2%, and 3%, respectively. The compressive strength, compressive stress-strain response, flexural strength, bending stress-strain response, elastic modulus, toughness modulus, toughness indices, fracture toughness, impact strength, hardness, and microstructural analysis of all four geopolymer composite pastes with varying contents of nano CaCO3 using scanning electron microscopy (SEM) were evaluated. The results revealed that the use of 3% nano CaCO3 in basalt fiber-reinforced geopolymer paste presented the highest values of compressive strength and hardness while the use of 2% nano CaCO3 showed the highest values of flexural strength, impact strength, and fracture toughness of composite paste. The SEM results indicated that the addition of nano CaCO3 improved the microstructure and provided a denser geopolymer paste by refining the interfacial zones and accelerating the geopolymerization reaction.  相似文献   
12.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
13.
Proton exchange membrane fuel cells (PEMFCs) durability has been severely hindered by carbon support poor stability in the cathodic Pt-based catalyst. Herein, a high-surface-area nitrogen-doped graphitic nanocarbon (N-G-CA) with mesopores is developed as Pt support to address PEMFCs durability challenge. Resorcinol-formaldehyde aerogel pyrolyzed carbon aerogel is selected as N-G-CA raw material. Nitrogen atoms are introduced into carbon aerogel via NH3 heat treatment. Then, nitrogen-doped carbon aerogel is transferred into N-G-CA via heating together with transition-metal salts (one of FeCl3, FeCl2, CoCl2, or MnCl2, etc.) at 1200 °C. As ORR catalyst, Pt/N-G-CA half-wave potential only lost 10 mV, after 30, 000 cycles accelerated aging test in the rotating-desk-electrode. Only 12 mV voltage loss at 1.5 A/cm2 is observed, after 5, 000 cycles for membrane electrode. Pt/N-G-CA exhibits superior durability and activity than commercial Pt/C. High durability of Pt/N-G-CA is due to N-G-CA high graphitization extent, as well as the interactions between doping nitrogen and Pt. N-G-CA is promising as stable support for durable Pt-based catalysts in PEMFCs, thanks to enhanced carbon corrosion resistance, uniformly dispersed Pt, and strong support-metals interaction.  相似文献   
14.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
15.
This paper investigates the relationship between economic growth, carbon dioxide (CO2) emissions, and energy consumption with an aim to test the validity of the Environmental Kuznets Curve (EKC) hypothesis in five ASEAN (Association of South East Asian Nations) countries (Indonesia, Malaysia, Philippines, Singapore, and Thailand) by applying the panel smooth transition regression (PSTR) model as a new econometric technique. The PSTR model is more flexible and appropriate for describing cross-country heterogeneity and time instability. Our empirical results strongly rejected the null hypothesis of linearity, and the test for no remaining nonlinearity indicated a model with one transition function and two threshold parameters. The first regime (levels of GDP per capita below 4686 USD) showed that environmental degradation increases with economic growth while the trend was reversed in the second regime (GDP per capita above 4686 USD). The results also showed that energy consumption with either the first or the second regime lead to increase CO2. The overall results support the validity of the EKC hypothesis in the ASEAN countries.  相似文献   
16.
This paper introduces a simultaneous process optimization and heat integration approach, which can be used directly with the rigorous models in process simulators. In this approach, the overall process is optimized utilizing external derivative-free optimizers, which interact directly with the process simulation. The heat integration subproblem is formulated as an LP model and solved simultaneously during optimization of the flowsheet to update the minimum utility and heat exchanger area targets. A piecewise linear approximation for the composite curve is applied to obtain more accurate heat integration results. This paper describes the application of this simultaneous approach for three cases: a recycle process, a separation process and a power plant with carbon capture. Case study results indicate that this simultaneous approach is relatively easy to implement and achieves higher profit and lower operating cost and, in the case of the power plant example, higher net efficiency than the sequential approach.  相似文献   
17.
In recent years, many tidal turbine projects have been developed using composites blades. Tidal turbine blades are subject to ocean forces and sea water aggressions, and the reliability of these components is crucial to the profitability of ocean energy recovery systems. The majority of tidal turbine developers have preferred carbon/epoxy blades, so there is a need to understand how prolonged immersion in the ocean affects these composites. In this study the long term behaviour of different carbon/epoxy composites has been studied using accelerated ageing tests. A significant reduction of composite strengths has been observed after saturation of water in the material. For longer immersions only small further changes in these properties occur. No significant changes have been observed for moduli nor for composite toughness. The effect of sea water ageing on damage thresholds and kinetics has been studied and modelled. After saturation, the damage threshold is modified while kinetics of damage development remain the same.  相似文献   
18.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   
19.
Solubility is one of the most indispensable physicochemical properties determining the compatibility of components of a blending system. Research has been focused on the solubility of carbon dioxide in polymers as a significant application of green chemistry. To replace costly and time-consuming experiments, a novel solubility prediction model based on a decision tree, called the stochastic gradient boosting algorithm, was proposed to predict CO2 solubility in 13 different polymers, based on 515 published experimental data lines. The results indicate that the proposed ensemble model is an effective method for predicting the CO2 solubility in various polymers, with highly satisfactory performance and high efficiency. It produces more accurate outputs than other methods such as machine learning schemes and an equation of state approach.  相似文献   
20.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号