首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   8篇
石油天然气   2篇
武器工业   1篇
一般工业技术   4篇
自动化技术   1篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
12.
In order to improve the safety of the high explosive 2,4,6,8,10,12‐hexanitrohexaazaisowurtzitane (HNIW), we cocrystallized HNIW with the insensitive explosive DNB (1,3‐dinitrobenzene) in a molar ratio 1 : 1 to form a novel cocrystal explosive. Structure determination showed that it belongs to the orthorhombic system with space group Pbca. Therein, layers of DNB alternate with bilayers of HNIW. Analysis of interactions in the cocrystal indicated that the cocrystal is mainly formed by hydrogen bonds and nitro‐aromatic interactions. Moreover, the thermal behavior, sensitivity, and detonation properties of the cocrystal were evaluated. The results implied that the melting point of the cocrystal is 136.6 °C, which means an increase of 45 °C relative that of pure DNB. The predicted detonation velocity and detonation pressure of the cocrystal are 8434 m s−1 and 34 GPa, respectively, which are similar to that of the reported HNIW/TNT cocrystal, but its reduced sensitivity (H50=55 cm) makes it an attractive ingredient in HNIW propellant formulations.  相似文献   
13.
An energetic cocrystal containing benzotrifuroxan (BTF) and 1,3‐dinitrobenzene (DNB) in 1 : 1 molar ratio was prepared by slow evaporation of solvent. The structure of the cocrystal was determined by single crystal X‐ray diffraction (XRD). It belongs to the monoclinic crystal system with space group P21/c. The performance of the cocrystal was evaluated on the basis of thermolysis, impact sensitivity, and detonation properties. Differential scanning calorimetry (DSC) revealed that the cocrystal has a melting point of 130 °C, which is an increase of 38 °C compared to pure DNB; the decomposition temperature is similar to that of pure BTF. The cocrystal exhibits an impact height with 50 % ignition probability of 88 cm, suggesting a substantial reduction in impact sensitivity compared to pure BTF. Furthermore, the cocrystal is predicted to have a detonation velocity of about 7373 m s−1 and a detonation pressure of about 24 GPa, respectively, indicating excellent detonation performance.  相似文献   
14.
Abstract

The use of soluble cocrystal for delivering drugs with low solubility, although a potentially effective approach, often suffers the problem of rapid disproportionation during dissolution, which negates the solubility advantages offered by the cocrystal. This necessitates their robust stabilization in order for successful use in a tablet dosage form. The cocrystal between carbamezepine and succinic acid (CBZ-SUC) exhibits a higher aqueous solubility than its dihydrate, which is the stable form of CBZ in water. Using this model system, we demonstrate an efficient and material-sparing tablet formulation screening approach enabled by intrinsic dissolution rate measurements. Three tablet formulations capable of stabilizing the cocrystal both under accelerated condition of 40?°C and 75% RH and during dissolution were developed using three different polymers, Soluplus® (F1), Kollidon VA/64 (F2) and Hydroxypropyl methyl cellulose acetate succinate (F3). When compared to a marketed product, Epitol® 200?mg tablets (F0), drug release after 60?min from formulations F1 (~82%), F2 (~95%) and F3 (~95%) was all higher than that from Epitol® (79%) in a modified simulated intestinal fluid. Studies in albino rabbits show correspondingly better bioavailability of F1–F3 than Epitol.  相似文献   
15.
An investigation on the structural, electronic, thermodynamic, and mechanical properties of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/2-methylpyridine-N-oxide (MPNO) cocrystal was carried out from 0 to 100 GPa by using a dispersion-corrected density functional theory (DFT-D) method. Our calculated crystal structure is in excellent agreement with experimental results at ambient pressure. Based on the analysis of lattice parameters, lattice angles, bond lengths, bond angles, and dihedral angles under high pressure, we observe that HMX molecules in the cocrystal bulk are seriously distorted but MPNO molecules remain relatively unchanged. Hydrogen bond lengths are greatly shortened under high pressure. In addition, with the increase in pressure, the bandgap decreases gradually. However, it increases suddenly at 70 GPa. Some important hydrogen bonds between HMX and MPNO are also observed in the density of states spectrum. According to the thermodynamic analysis, this cocrystal is more easily prepared under low pressure. Finally, we characterized its mechanical properties and the results show that this cocrystal is malleable in nature. We expect that this research can provide a fundamental basis for further HMX cocrystal design and preparation.  相似文献   
16.
Resonant acoustic mixing (RAM) was applied to the preparation of an energetic‐energetic cocrystal comprised of CL‐20 and HMX in a 2 : 1 mol ratio. We have prepared the cocrystal using the RAM technology in a resource‐efficient manner providing near quantitative yield. The cocrystalline product from the RAM preparation is consistent with the product from solution crystallization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号