首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   334篇
  国内免费   62篇
电工技术   118篇
综合类   51篇
化学工业   654篇
金属工艺   113篇
机械仪表   43篇
建筑科学   23篇
矿业工程   18篇
能源动力   227篇
轻工业   29篇
水利工程   3篇
石油天然气   10篇
武器工业   2篇
无线电   485篇
一般工业技术   579篇
冶金工业   24篇
原子能技术   28篇
自动化技术   79篇
  2024年   6篇
  2023年   119篇
  2022年   30篇
  2021年   96篇
  2020年   129篇
  2019年   90篇
  2018年   79篇
  2017年   104篇
  2016年   101篇
  2015年   103篇
  2014年   118篇
  2013年   148篇
  2012年   113篇
  2011年   173篇
  2010年   113篇
  2009年   130篇
  2008年   137篇
  2007年   117篇
  2006年   86篇
  2005年   71篇
  2004年   61篇
  2003年   53篇
  2002年   43篇
  2001年   36篇
  2000年   38篇
  1999年   29篇
  1998年   42篇
  1997年   27篇
  1996年   18篇
  1995年   9篇
  1994年   7篇
  1993年   14篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   8篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   7篇
  1983年   1篇
  1980年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2486条查询结果,搜索用时 0 毫秒
991.
Rechargeable batteries with flexibility can find tremendous applications in wearable and bendable electronics. One central mission for the advancement of such high‐performance batteries is the exploration of flexible anodes with electrochemical and mechanical robustness. Herein reported is a robust and flexible sodium‐ion anode based on self‐supported hematite nanoarray grown on carbon cloth. The ammonia treatment that results in dual doping of both nitrogen and low‐valent iron renders surface reactivity and electric conductivity to the material. The dual‐doped hematite arrays afford a robust activity for sodium storage, exhibiting reversible capacities of 895 and 382 mAh g?1 at current rates of 0.1 and 5 A g?1, respectively, or 615 and 356 mAh g?1 by removing the contribution of the substrate. They also sustain 85% of the initial capacity upon 200 cycles at 0.2 A g?1. To demonstrate the flexibility, full cells composed of a hematite array anode and Na3V2(PO4)3/C cathode are assembled. The cell is capable of affording an energy density of 201 Wh kg?1 and sustaining repeated bending without performance decay, demonstrating a significant potential in practical application.  相似文献   
992.
Stretchable interconnects with invariable conductivity and complete elasticity, which return to their original shape without morphological hysteresis, are attractive for the development of stretchable electronics. In this study, a polydimethylsiloxane‐coated multifilament polyurethane‐based helical conductive fiber is developed. The stretchable helical fibers exhibit remarkable electrical performance under stretching, negligible electrical and mechanical hysteresis, and high electrical reliability under repetitive deformation (10 000 cycles of stretching with 100% strain). The resistance of the helical fibers barely increases until the applied strain reaches the critical strain, which is based on the helical diameter of each fiber. According to finite element analysis, uniform stress distribution is maintained in the helical fibers even under full stretching, owing to the fibers' true helix structure. In addition, the stretchable helical fibers have the ability to completely return to their original shapes even after being fully compressed in the vertical direction. Cylinder‐shaped connecting pieces made using 3D printing are designed for stable connection between the helical fibers and commercial components. A deformable light‐emitting diode (LED) array and biaxially stretchable LED display are fabricated using helical fibers. A skin‐mountable band‐type oximeter with helical fiber‐based electrodes is also fabricated and used to demonstrate real‐time detection of cardiac activities and analysis of brain activities.  相似文献   
993.
Multijunction/tandem solar cells have naturally attracted great attention because they are not subject to the Shockley–Queisser limit. Perovskite solar cells are ideal candidates for the top cell in multijunction/tandem devices due to the high power conversion efficiency (PCE) and relatively low voltage loss. Herein, sandwiched gold nanomesh between MoO3 layers is designed as a transparent electrode. The large surface tension of MoO3 effectively improves wettability for gold, resulting in Frank–van der Merwe growth to produce an ultrathin gold nanomesh layer, which guarantees not only excellent conductivity but also great optical transparency, which is particularly important for a multijunction/tandem solar cell. The top MoO3 layer reduces the reflection at the gold layer to further increase light transmission. As a result, the semitransparent perovskite cell shows an 18.3% efficiency, the highest reported for this type of device. When the semitransparent perovskite device is mechanically stacked with a heterojunction silicon solar cell of 23.3% PCE, it yields a combined efficiency of 27.0%, higher than those of both the sub‐cells. This breakthrough in elevating the efficiency of semitransparent and multijunction/tandem devices can help to break the Shockley–Queisser limit.  相似文献   
994.
The synergistic effects derived from optimizing the chemical and structural features of electrocatalysts permit them to attain remarkable activity and stability. Herein, 1D/2D cobalt‐based nanohybrid (CoNH) electrodes are developed; the structural design consists of Co3O4 electrospun nanoribbons (NRs) deposited onto a carbon fiber paper substrate where Co3O4 nanosheets are subsequently grown via an electrodeposition step and UV/ozone treatment. The content of noncovalently functionalized carbon nanotubes within the Co3O4 NRs is first tuned to enhance their charge transfer properties and mechanical stability. The electrocatalytic activity of the electrodes is further improved by a phosphorus modification of the 1D NRs, resulting in the formation of NaCoPO4. The optimized 1D/2D CoNH electrode, i.e., ED‐0.09 wt% fCNTs/P‐CoNHs, displays a similar performance to that of platinum in 0.25 m Na2S/0.35 m Na2SO3 (Tafel slope ≈102 mV dec?1 for the former and ≈96 mV dec?1 for the latter) and outstanding stability for up to 48 h. The versatility and high activity of this electrode is also demonstrated according to tests in a conventional water splitting system (cell voltage 1.55V, to produce 10 mA cm?2) and a solar‐driven electrolyzer (1 m KOH).  相似文献   
995.
The large‐scale fabrication of efficient and inexpensive bifunctional catalysts is highly desirable but very challenging for oxygen reduction reaction and oxygen evolution reaction (ORR–OER) in metal–air batteries. Here, a facile and scalable approach for the fabrication of hierarchically porous air electrode consisting of cobalt nanoparticles embedded in bamboo‐like nitrogen‐rich carbon nanotubes (Co/N@CNTs), which are in situ grown onto the surface of carbon nanotube macrofilm (CNMF) through a catalytic growth of crosslinked carbon nanotubes is reported. The resulting hybrid macrofilm (Co/N@CNTs@CNMF) can be directly used as a freestanding air electrode without adding any binder or addivities. More importantly, when incorporated in a zinc–air battery (ZAB), the Co/N@CNTs@CNMF electrode demonstrates drastically enhanced ORR and OER activity while maintaining excellent durability during cycling. Further, when it is used to assemble an all‐solid‐state ZAB, the cell also displays excellent mechanical flexibility, implying promising perspectives as power sources for wearable electronics.  相似文献   
996.
设计了一个双并联电渗驱动泵,它由三条并联的主通道和叉指型电极两部分组成,其中每条主通道由若干个与电渗流形成方向成45°角的沟槽并联构成。通过选用ITO载玻片作为芯片基底并获得其最佳工艺参数,制作了带电极的PDMS-玻璃微流控芯片。最后对制作的电渗微泵进行测试,通过记录一段时间内单个主通道泵输送液体的体积,得出单个主通道的流速与微泵总流速。实验发现在5V内,微泵泵送液体的能力随着电压的增加而增大,微泵流速可以达到正常人体眼球房水生成速度,该结构在未来房水引流器件制作方面具有潜在的应用价值。  相似文献   
997.
多巴胺电化学传感器的研究进展   总被引:1,自引:0,他引:1  
多巴胺(DA)是哺乳动物中枢神经系统中的一种非常重要的信息传递物质,与多种病症,如帕金森病、亨丁顿舞蹈症和多动症等息息相关,因此在日常的检测分析中,建立简单、快速而又准确的分析方法是非常必要的。该文综述了目前所使用的电化学分析测DA的各种方法及所用的物质,并对DA电化学传感器发展方向和趋势进行了展望。  相似文献   
998.
This paper presents the design, fabrication and characterization of a high fill-factor micromirror array in application of wavelength selective switch (WSS). The micromirror array consists of 52 independent micromirrors. Each micromirror is composed of a cantilever-type micromirror plate (800 μm × 120 μm) with a bumper and an eight-terraced bottom electrode with a limiting plane. A cantilever beam is designed to obtain the rotation angle of micromirror plate and achieve a high fill-factor for the micromirror array. Meanwhile, the bumper and limiting plane are used to prevent the damage possibly caused by the pull-in effect or some vibration instance. An eight-terraced electrode is utilized for reducing the driving voltage. The micromirror array with a high fill-factor in excess of 97% has been successfully achieved using the bulk micromachining technologies. The measured static and dynamic characteristics show that the micromirror can achieve a maximal rotation angle of 0.87° with a Direct Current (DC) driving voltage of 156 V. The turn-on responding time is 0.57 ms, and the turn-off responding time is 4.36 ms. Furthermore micromirror plate can be easily released from the pull-in state without damaged due to the novel bumper design. The switching function between the two output ports of a WSS optical system has also been demonstrated.  相似文献   
999.
A simple and low budget microfabrication method compatible with mass production was developed for the integration of electrodes for capacitively coupled contactless conductivity detection (C4D) in Lab on a Chip devices. Electrodes were patterned on a printed circuit board using standard processing. This was followed by lamination-photolithography-lamination to cover the electrodes in dry film photoresist (DFR) using an office laminator. This resulted in a flush, smooth surface on top of the detection electrodes, enabling subsequent integration of a microfluidic network at a distance dictated by the thickness of the DFR (17 μm, 30 μm and 60 μm were used in this work). This process was applied to create two types of detectors, re-usable detectors to be used in combination with a separate microfluidic network and integrated detectors where the microfluidic network is irreversibly sealed to the detector. A poly(dimethylsiloxane) (PDMS) slab containing the microfluidic network was positioned on top of the re-usable detectors to create the PDMS hybrid devices. The integrated DFR devices were created by patterning and sealing the microchannel in DFR using subsequent lamination and lithographic steps. The sensitivity of the C4D made using this new technology for small inorganic cations was between 6 and 20 μM, which is comparable with devices made using significantly more advanced technologies. Where the 17 μm film slightly improved the sensitivity, the use of 30 μm thick insulating films was preferred as these did not impose significant restrictions on the applicable field strengths.  相似文献   
1000.
The development of a preconcentrating sensor based on 6-O-palmitoyl-l-ascorbic acid (PAA)-modified graphite (GRA) electrodes for the determination of uranium is described. PAA, a water insoluble compound of ascorbic acid, was immobilized onto the surface of the GRA electrodes through physical adsorption from acetone solutions. Uranium was accumulated by heterogeneous complexation (10 min, in 0.1 M H3BO3, pH 4.3) and then, it was reduced by means of a differential pulse voltammetric scan in 0.1 M H3BO3, pH 3.4. Alternatively, the performance of both preconcentration and voltammetric steps in a single run, at 0.1 M H3BO3, pH 3.65, was also examined; however, in this case the observed current signals were lower by 30%. The experimental variables were investigated and under the selected conditions, a linear calibration curve in the range 2.7-67.5 μg L−1 U(VI) was constructed (r2 = 0.9981). The 3σ limit of detection and the relative standard deviation of the method were 1.8 μg L−1 U(VI) and 8% (n = 5, 20 μg L−1 U(VI), preconcentration time 10 min), respectively. By increasing the preconcentration time to 30 min, a limit of detection as low as 0.26 μg L−1 U(VI) can be achieved. The effect of potential interferences was also examined. The accuracy of the method was established by recovery studies in inoculated tap and lake water samples. A simple and fast procedure based on filtering of the sample through a C-18 microcolumn was successfully used to remove the organic matter from the lake water samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号