首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19795篇
  免费   469篇
  国内免费   446篇
电工技术   450篇
综合类   356篇
化学工业   4070篇
金属工艺   1398篇
机械仪表   740篇
建筑科学   582篇
矿业工程   180篇
能源动力   1152篇
轻工业   1433篇
水利工程   67篇
石油天然气   337篇
武器工业   85篇
无线电   1500篇
一般工业技术   3624篇
冶金工业   1055篇
原子能技术   352篇
自动化技术   3329篇
  2024年   161篇
  2023年   1206篇
  2022年   825篇
  2021年   1090篇
  2020年   1070篇
  2019年   974篇
  2018年   929篇
  2017年   949篇
  2016年   1102篇
  2015年   1110篇
  2014年   1548篇
  2013年   2993篇
  2012年   940篇
  2011年   801篇
  2010年   736篇
  2009年   709篇
  2008年   556篇
  2007年   535篇
  2006年   437篇
  2005年   321篇
  2004年   277篇
  2003年   229篇
  2002年   199篇
  2001年   149篇
  2000年   109篇
  1999年   88篇
  1998年   85篇
  1997年   52篇
  1996年   66篇
  1995年   70篇
  1994年   72篇
  1993年   46篇
  1992年   35篇
  1991年   44篇
  1990年   30篇
  1989年   30篇
  1988年   27篇
  1987年   16篇
  1986年   11篇
  1985年   11篇
  1984年   20篇
  1983年   5篇
  1982年   3篇
  1981年   8篇
  1980年   10篇
  1979年   11篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Multifluid model (MFM) simulations have been carried out on liquid–solid fluidized beds (LSFB) consisting of binary and higher-order polydisperse particle mixtures. The role of particle–particle interactions was found to be as crucial as the drag force under laminar and homogenous LSFB flow regimes. The commonly used particle–particle closure models are designed for turbulent and heterogeneous gas–solid flow regimes and thus exhibit limited to no success when implemented for LSFB operating under laminar and homogenous conditions. A need is perceived to carry out direct numerical simulations of liquid–solid flows and extract data from them to develop rational closure terms to account for the physics of LSFB. Finally, a recommendation flow regime map signifying the performance of the MFM has been proposed. This map will act as a potential guideline to identify whether or not the bed expansion characteristics of a given polydisperse LSFB can be correctly simulated using MFM closures tested.  相似文献   
942.
We present the Onsager–Stefan–Maxwell thermodiffusion equations, which account for the Soret and Dufour effects in multicomponent fluids. Unlike transport laws derived from kinetic theory, this framework preserves the structure of the isothermal Stefan–Maxwell equations, separating the thermodynamic forces that drive diffusion from the force that drives heat flow. The Onsager–Stefan–Maxwell transport-coefficient matrix is symmetric, and the second law of thermodynamics imbues it with simple spectral characteristics. This new approach allows for heat to be considered as a pseudo-species and proves equivalent to both the intuitive extension of Fick's law and the generalized Stefan–Maxwell equations popularized by Bird, Stewart, and Lightfoot. A general inversion process facilitates the unique formulation of flux-explicit transport equations relative to any choice of convective reference velocity. Stefan–Maxwell diffusivities and thermal diffusion factors are tabulated for gaseous mixtures containing helium, argon, neon, krypton, and xenon. The framework is deployed to perform numerical simulations of steady three-dimensional thermodiffusion in a ternary gas.  相似文献   
943.
A series of pyrazine-interior-embodied metal–organic framework-74 composites (py-MOF-74) were successfully synthesized by a post-synthetic vapor modification method. Here, pyrazine molecules occupy the cavity to block the wide pores of MOF-74, which accentuates the difference in adsorption of a pair of gases on MOFs and consequently reinforces the adsorption selectivity. Different from the “physical confinement” of occupants, the pyrazine molecule with dual “para-nitrogen” atoms donates one N atom to bond with the open metal ion of MOF-74 for stability and the other N atom for potential CO2 trapping. Typically, py-MOF-74c with the highest pyrazine insertion ratio displays selectivity greatly superior to that of MOF-74 in equimolar CO2/CH4 (598 vs. 35) and in simulated CO2/N2 flue gas (471 vs. 49). Py-MOF-74 entities are long-lived adsorbents, and their CO2 capacity can be maintained even after storage for 1 year in air. Py-MOF-74 also showed a sharp molecular sieve property in fixed-bed cycle adsorption tests, which implies its great potential in real applications.  相似文献   
944.
As an environmental-benign fuel, methane (CH4) has received considerable interest for developing high-capacity energy storage systems. Herein, we aim to rapidly discover covalent–organic frameworks (COFs) for ultrahigh CH4 storage among 530,000+ COFs, including one experimental (Curated) and two hypothetical (Berkeley and Genomic) databases. First, the feature space of all the three COF databases is projected by t-Distributed Stochastic Neighbor Embedding (t-SNE) technique, which reveals a potential but unexplored regime in Genomic COFs. Subsequently, an active learning (AL) approach is developed by integrating parallel acquisition with molecular simulation to efficiently explore Genomic COFs. The parallel AL model demonstrates remarkable screening efficiency and shortlists top COFs by evaluating only 50 out of 445,845 Genomic COFs. A record-breaking Genomic COF is identified with CH4 deliverable capacity of 222.2 v/v, surpassing the current world record (208.0 v/v from experiment and 217.9 v/v from simulation). Our AL approach is significantly faster than brute-force simulation and conventional machine learning, it would accelerate the discovery of advanced porous materials for broad applications.  相似文献   
945.
946.
Epitaxial Cd2SnO4 films were fabricated on MgO(00l) single crystalline substrates by pulsed laser deposition technique at various substrate temperatures and growth oxygen pressures. The microstructure, transport, and optical properties of the films were studied in detail. High-resolution X-ray diffraction and high-resolution transmission electron microscopy results demonstrate that all the Cd2SnO4 films are grown epitaxially on MgO(00l) substrates. Atomic force microscope images indicate that the films have smooth surface morphologies. Hall-effect measurements reveal that the epitaxial film grown at 680°C and 40 Pa presents the minimum resistivity value of 0.61 mΩcm and maximal Hall mobility of 32.87 cm2 V−1 s−1. The metal–semiconductor transitions of Cd2SnO4 films were observed and explained by competitive effects of two conductive mechanisms. The optical transmittance of the Cd2SnO4 films is higher than 75% in the visible and near-infrared range, and the optical bandgap was determined to be about 3.09 eV for the film grown at optimal condition. The band structure and density of states of the Cd2SnO4 were calculated by the density functional theory.  相似文献   
947.
Present study highlights the development of carbon-loaded SBA 15 membrane on clay-alumina tubular support and its performance on the CO2 separation efficiencies from different mixture gases. To modify the large pores of SBA 15 by graphitic carbon, low molecular weight phenol–formaldehyde (PF) resin was incorporated into the mesoporous channel followed by calcination under inert atmosphere. The modified ordered pore structure of the membrane has been characterized by low-angle XRD, TEM, and pore size distribution analysis. The chemical state of the deposited carbon phase into the SBA 15 pores was analyzed by X-ray photoelectron and Raman spectroscopy. Carbon having graphitic nature mainly in graphene oxide has been deposited into the mesopore of SBA 15 resulting decrease in pore size from 8.9 to 1.0 nm. Finally, the developed SBA 15 carbon membranes were characterized by CO2 permeation and separation selectivity of CO2/CH4, CO2/CO. Highest CO2/CH4 separation factor was achieved as 16.9 with CO2 permeance 13.6 × 10–8 mol/m2/s/Pa at 200 kPa feed pressure by the 20% resin with 2 times coated membrane. In flue gas analysis, highest CO2/CO separation factor of 32.8 was achieved. This study offers an observation on CO2 separation from simulated BF gas for the first time and the results show the potential of the developed SBA 15/C composite membranes in commercial application.  相似文献   
948.
Innovative cooling technologies are recognized by many industries as a crucial part of their system design. A large electrocaloric effect (ECE) and extended working temperature are the key issues hindering the realization of electrocaloric refrigeration technology. In this work, large ECE (Δ= 0.8–0.9°C @ 4 kV/mm) with an ultrawide temperature span from 30 to 120°C is noted for lead-free (Na1/2Bi1/2)0.80Sr0.20(Zn1/3Nb2/3)xTi1-xO3 ceramics. The excellent ECE performance can be ascribed to the evolution of polar nanoregions. Our work suggests that this material is promising for applications in solid-state refrigeration systems with a broad range of operating temperatures.  相似文献   
949.
Bismuth layer–structured ferroelectric calcium bismuth niobate (CaBi2Nb2O9, CBN) is considered to be one of the most potential high-temperature piezoelectric materials due to its high Curie temperature Tc of ∼940°C, but the drawbacks of low electrical resistivity at elevated temperature and low piezoelectric performance limit its applications as key electronic components at high temperature (HT). Herein, we report significantly enhanced dc electrical resistivity and piezoelectric properties of CBN ceramics through rare-earth element Tb ions compositional adjustment. The nominal compositions of Ca1−xTbxBi2Nb2O9 (abbreviated as CBN-100xTb) have been fabricated by conventional solid-state reaction method. The composition of CBN-3Tb exhibits a significantly enhanced dc electrical resistivity of 1.97 × 106 Ω cm at 600°C, which is larger by two orders of magnitude compared with unmodified CBN. The donor substitutions of Tb3+ ions for Ca2+ ions reduce the oxygen vacancy concentrations and increase the band-gap energy, which is responsible for the enhancement of dc electric resistivity. The temperature-dependent dc conduction properties reveal that the conduction is dominated by the thermally activated oxygen vacancies in the low-temperature region (200–350°C) and by the intrinsic conduction in the HT region (350–650°C). The CBN-3Tb also exhibits enhanced piezoelectric properties with a high piezoelectric coefficient d33 of ∼13.2 pC/N and a high Tc of ∼966°C. Moreover, the CBN-3Tb exhibits good thermal stabilities of piezoelectric properties, remaining 97% of its room temperature value after annealing at 900°C. These properties demonstrate the great potentials of Tb-modified CBN for high-temperature piezoelectric applications.  相似文献   
950.
赵文武  周海静  黄雁  王秀文  郝斌  刘剑 《化工进展》2022,41(11):5843-5849
采用高温固相反应法制备了一系列镝离子掺杂Bi2ZnB2O7(BZBO)光催化剂。通过XRD、TEM和HRTEM等手段对BZBO: xDy3+材料的结构及形貌等进行了表征,通过RhB溶液在紫外灯下的光降解实验研究了不同浓度镝离子掺杂对BZBO光催化性能的影响。RhB光降解实验结果表明,当Dy3+在BZBO中的掺杂量为4%时,BZBO: 4%Dy3+具有最好的光降解活性,其光降解活性为纯BZBO的1.56倍。通过光吸收性能分析可知,Dy3+的引入增强了BZBO的紫外吸收强度,并稍降低了其禁带宽度。光吸收性能、光致发光光谱、光电流和EIS实验结果表明,BZBO: 4%Dy3+的光催化活性增强的主要原因是BZBO中掺杂的镝不仅提高了BZBO光催化剂的光吸收能力,更促进了光生电子-空穴对的分离和转移。因此,在稀土元素和极化电场的作用下,BZBO: 4%Dy3+的光催化活性要高于其他所制备的样品。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号