全文获取类型
收费全文 | 52篇 |
免费 | 5篇 |
国内免费 | 3篇 |
专业分类
电工技术 | 2篇 |
综合类 | 3篇 |
化学工业 | 17篇 |
金属工艺 | 2篇 |
建筑科学 | 1篇 |
能源动力 | 7篇 |
轻工业 | 1篇 |
水利工程 | 1篇 |
无线电 | 8篇 |
一般工业技术 | 15篇 |
冶金工业 | 2篇 |
自动化技术 | 1篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 3篇 |
2020年 | 4篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 4篇 |
2016年 | 2篇 |
2014年 | 4篇 |
2013年 | 2篇 |
2012年 | 4篇 |
2011年 | 4篇 |
2010年 | 4篇 |
2009年 | 6篇 |
2008年 | 6篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 1篇 |
2000年 | 1篇 |
1996年 | 2篇 |
排序方式: 共有60条查询结果,搜索用时 15 毫秒
11.
《International Journal of Hydrogen Energy》2023,48(37):13972-13986
Exploring high-performance and multifunctional electrocatalysts for alcohols oxidation is the key to develop alkaline fuel cells. Herein, we prepared a novel palladium-nickel-phosphorus catalyst supported on single atom iron carbons (SAICs) with different diameter sizes (1000 nm, 200 nm, 100 nm, 50 nm, and 20 nm), which were synthesized by direct carbonization of Fe-doped Zeolitic Imidazolate Framework-8 (ZIF-8). Electrochemical tests reveal that the as-prepared PdNiP/50nmSAIC exhibited excellent electrooxidation activity and stability to the various alcohols (methanol, glycerol, and especially ethylene glycol) electrooxidation in the alkaline solution, which is much higher than that of commercial Pd/C and other advanced Pd-based catalysts. Meanwhile, the rotating disk electrode (RDE) and CO-stripping results proves that PdNiP/50nmSAIC possesses a faster kinetic process of ethylene glycol oxidation and enhanced anti-CO poisoning ability. Our efforts provide a new strategy for the development of MOFs-derived multielement electrocatalyst with excellent activity and stability, and a bright future for alcohol oxidation. 相似文献
12.
《International Journal of Hydrogen Energy》2023,48(48):18291-18300
Water electrolysis for green hydrogen production is gaining tremendous attention in the quest towards sustainable energy sources. At the heart of water splitting technology are the electrocatalysts, which facilitate the two half-cell reactions, i.e., the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with the latter being the most thermodynamically uphill. Herein, we managed to fabricate Ni1-xFexO microflowers (μFs) with varying % of Fe doping (0 < x < 0.36) via an easy chemical bath deposition (CBD) method. The as-synthesized μFs drop-casted on graphene paper (GP) are then applied as electrocatalysts for OER. Compared to contrast catalysts, the electrocatalyst with xFe = 0.1 exhibits a lower overpotential of 297 mV at a current density of 10 mA cm−2, Tafel slope of 44 mV dec−1 and unprecedented turnover frequency of 4.6 s−1 at 300 mV. It is believed that this remarkable electrochemical performance mainly stems from the synergistic effects of Ni and Fe species, working in harmony to enhance charge transfer kinetics and intrinsic activity of the catalyst. This work provides a promising avenue for developing cost-effective and highly active electrocatalysts as advanced electrodes for energy related applications. 相似文献
13.
Nanorods TiO2, Fe-TiO2 (3 and 2 at.% Fe), V-TiO2 (5 at.% V) were prepared by a low temperature method and characterized by powder X-ray diffraction, thermal analysis, transmission electron microscope and BTE surface area analysis. The as-prepared samples were evaluated as catalysts for photodegradation of Congo red aqueous solution under the sunlight. Nanorods Fe-doped TiO2 shows higher adsorption and also higher photocatalytic degradation of Congo red solution compared to pure nanorods TiO2 rutile. A higher activity is obtained when the amount of doped Fe is 2 at.%, compared to 3 at.%. However, nanorods V-TiO2 does not show neither adsorption nor photodegradation activity of Congo red solution. 相似文献
14.
为了改善目前锂离子电池电极材料的成本高、环境污染等问题,本文提出了一种由植物纤维构成的宣纸直接烧结炭化并对其进行改性之后作为锂离子电池负极材料的方法。通过改变烧结温度和时间,探究宣纸的最佳炭化机制,之后通过简单的溶液法和烧结法掺杂入Fe对宣纸基碳纤维材料进行改性。并通过X射线衍射光谱(XRD)、扫描电镜(SEM)和X射线能谱分析(EDS)等分析手段对制备的材料进行了表征和对比,结果表明Fe成功均匀掺入到宣纸的原材料中。材料有很强的柔性可直接作为电极使用,结构均匀且稳定,并且在微观结构上,表面较之前呈现出了很多均匀的微孔。通过恒流充放电法分析了所制备宣纸材料作为锂离子电池负极的储锂性能。结果表明,在500mA/g电流密度下锂离子电池容量首圈可达到565.4mA·h/g,当电流密度高达2500mA/g时可逆容量仍然能够保持在124.7mA·h/g;在1000mA/g电流密度下可以保持稳定的长循环至1000圈。 相似文献
15.
Kelvin Y.S. Chan 《Thin solid films》2008,516(16):5582-5585
Polycrystalline Fe-doped TiO2 anatase films were deposited on (001) oriented SrTiO3 single crystal substrates at temperatures less than 200 °C from acidic aqueous solutions of titanyl sulfate and iron (III) nitrate. Epitaxial anatase TiO2 films were obtained when the films were annealed in air at 900 °C. Room-temperature ferromagnetic Fe-doped TiO2 thin films were obtained after repeated deposition and annealing steps. The observed saturation magnetization (>0.28μB/Fe) could not be attributed to the presence of secondary phase magnetic iron oxides or iron clusters. 相似文献
16.
表面活性剂废水的电催化氧化及降解动力学 总被引:1,自引:0,他引:1
采用电催化氧化法处理较低浓度的表面活性剂废水,考察了反应时间、体系pH值、表面活性剂初始浓度、电流密度等因素对处理效果的影响,并初步探讨了表面活性剂降解的反应动力学.结果表明,当初始pH值为7.5,反应时间为120mm时,质量浓度为25mg/L的表面活性剂十二烷基苯磺酸钠(DBs)的去除率为97%,且DBS降解的反应动力学模型可用幂指数方程描述,该模型计算值与试验值吻合较好,误差在7%以内.另外,该方法耐冲击负荷能力强、pH 值适用范围广,有较好地应用前景. 相似文献
17.
采用溶胶-凝胶法在低温下制备出Fe3+掺杂TiO2(Fe3+/TiO2)溶胶,研究Fe3+掺杂对TiO2催化性能的影响,用TG/DTA技术分析TiO2粉末的热分解过程,用XRD、TEM等表征Fe3+掺杂对TiO2晶型、晶粒尺寸、晶粒形貌的影响,结果表明:Fe3+掺杂会对纳米TiO2晶粒的粒径及晶体形貌产生影响,抑制TiO2晶型由锐钛矿向金红石的转变。将亚甲基蓝作为目标污染物进行光催化降解试验,紫外-可见漫反射吸收光谱分析表明:经适量Fe3+掺杂后的TiO2溶胶光催化活性提高,当硝酸铁与钛酸丁酯的物质的量比为0.20%时,光催化活性最佳。 相似文献
18.
Fe-doped TiO2 (Fe-TiO2) nanorods were prepared by an impregnating-calcination method using the hydrothermally prepared titanate nanotubes as precursors and Fe(NO3)3 as dopant. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption–desorption isotherms and UV–vis spectroscopy. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air under visible-light irradiation. The results show that Fe-doping greatly enhance the visible-light photocatalytic activity of mesoporous TiO2 nanorods, and when the atomic ratio of Fe/Ti (RFe) is in the range of 0.1–1.0%, the photocatalytic activity of the samples is higher than that of Degussa P25 and pure TiO2 nanorods. At RFe = 0.5%, the photocatalytic activity of Fe-TiO2 nanorods exceeds that of Degussa P25 by a factor of more than two times. This is ascribed to the fact that the one-dimensional nanostructure can enhance the transfer and transport of charge carrier, the Fe-doping induces the shift of the absorption edge into the visible-light range with the narrowing of the band gap and reduces the recombination of photo-generated electrons and holes. Furthermore, the first-principle density functional theory (DFT) calculation further confirms the red shift of absorption edges and the narrowing of band gap of Fe-TiO2 nanorods. 相似文献
19.
《Ceramics International》2016,42(11):12606-12612
Samples of La0.5Ca0.5Mn1−xFexO3+δ (0≤x≤0.5) were synthesized using a solid-state reaction method involving a milling process and thermal treatment up to 1200 °C in an air atmosphere. Samples were characterized structurally with X-ray diffraction analysis and Rietveld refinement with morphology characterization using scanning electron microscopy. Magnetic properties were investigated using a physical property measurement system to obtain zero field cooling and the associated curves to plot hysteresis loops. Our results revealed the interplay between the structural and magnetic properties as Fe ions attached to the crystalline structure. A mechanism based on the substitution of Mn3+ and Mn4+ by low-spin Fe3+ and Fe4+ ions, respectively, was hypothesized to interpret the experimental data. More specifically, the temperature at which the transition from ferromagnetic to paramagnetic occurred increased with increasing Fe content as a result of a greater density of oxygen-mediated ferromagnetic bonds. Conversely, the magnetization weakened because the t2g electrons were distributed in the respective d orbitals by adopting a low-spin configuration. Such a configuration is preferred as a result of the unit cell distortion in the milling process where the greater ionic radius of the Fe4+ ions leads to an elongated c-axis tetragonal symmetry and a greater unit cell volume. Finally, low-temperature magnetic behavior revealed the occurrence of a reentrant spin-glass type state within the ferromagnetic matrix favored by a milling-driven structural disorder and the existence of competitive superexchange interactions. 相似文献
20.