排序方式: 共有184条查询结果,搜索用时 15 毫秒
81.
基于GRU-NN模型的短期负荷预测方法 总被引:3,自引:0,他引:3
目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序性特点的历史负荷序列,建模学习负荷数据内部动态变化规律,其输出结果与其他外部影响因素(天气、日类型等)融合为新的输入特征,使用深度神经网络进行处理,整体分析特征与负荷变化的内在联系,最后完成负荷预测。以美国某公共事业部门提供的公开数据集和中国某地区的负荷数据作为实际算例,该方法预测精度分别达到了97.30%和97.12%,并与长短期记忆神经网络、多层感知机以及GRU神经网络方法进行对比,实验结果表明所提方法具有更高的预测精度和更快的预测速度。 相似文献
82.
为解决单一传感器信号易受干扰且能提取的退化信息有限,导致轴承剩余寿命预测精度低的问题,提出一种基于双通道信息融合与门控单元(GRU)神经网络的轴承剩余寿命预测方法。进行轴承寿命试验时,在振动传感器采集信号的基础上增加声发射传感器,弥补单一信号易受干扰的缺点;使用卷积神经网络自动挖掘出包含轴承退化信息的特征,避免传统算法过分依赖专家判断的弊端;通过归一化处理对信息进行融合;最后使用这些数据训练GRU神经网络,利用训练好的门控单元神经网络预测高铁牵引电机轴承的剩余寿命。结果表明:相比单通道数据,双通道数据训练出的门控神经网络模型的预测结果更为准确;门控单元神经网络相比长短时记忆神经网络有更高的轴承寿命预测精确度。 相似文献
83.
现阶段基于深度学习的故障诊断需要大量的数据,而制作数据集是一项耗时耗力的工作。针对这一缺点,提出一种基于门控循环单元(Gate Recurrent Unit,GRU)与迁移学习的滚动轴承故障诊断方法。该方法利用与目标域特征相似且易获得源域数据的特点训练网络,确定网络结构和参数,冻结经过训练的卷积神经网络(Convolutional Neural Networks,CNN)和GRU,用小样本目标域数据训练该网络,微调全连接层和分类层,达到迁移的目的。实验对比分析表明,基于GRU与迁移学习的滚动轴承故障诊断方法明显优于基于BP神经网络和基于概率神经网络(Probabilistic Neural Network,PNN)方法的故障诊断,能够更加准确地进行故障分类,为小样本数据集下的故障诊断提出了新思路。 相似文献
84.
针对混合直流输电系统故障测距存在行波波头难以识别以及固有主频不易提取的问题,提出一种基于小波能量谱和麻雀搜索算法(sparrow search algorithm, SSA)优化的门控循环单元(gate recurrent unit, GRU)模型的故障测距方案。首先,分析频谱能量与故障距离的相关关系,利用小波包分解提取小波包能量谱特征向量,作为GRU模型输入。其次,搭建和训练GRU模型,挖掘时间序列中的深层次故障信息,并利用SSA的迭代寻优对GRU模型参数进行优化,实现故障距离的快速准确定位。最后,在PSCAD/EMTDC 中搭建混合三端直流输电系统模型,实验结果证明该方法定位精度高、抗干扰能力和泛化能力强,并具有一定的耐过渡电阻能力。 相似文献
85.
近年随着慕课(MOOC)等新兴教育教学手段的快速发展,大量的学习者学习行为可以被系统所记录和分析,从而为个性化教学奠定了重要基础。在Felder-Silverman学习风格模型的理论基础上,通过引入智能分析算法动态地分析和识别学习者学习风格,构建了一套融合了卷积神经网络和循环神经网络的“识别-推理”复合模型,通过学习者的线上学习行为、社区交互行为、学习内容浏览行为、点击拖动行为等学习过程识别其学习行为特征,并使用基于门控循环单元(Gated Recurrent Unit,GRU)的循环神经网络处理和预测其可能的学习风格及对学习内容形式的偏好,以更高效地为学习者提供适应于其学习风格的学习内容和路径,优化学习体验,为大规模、个性化和高质量的下一代学习平台提供技术支撑。 相似文献
86.
在以往的Attention模型中,只采用了Bidirectional-RNN, BRNN对上下文信息是有效的,但是无法提取文本的高维特征,所以引入了CNN.因为基于矩阵变换的Attention模型无法对CNN抽取的特征进行表征,所以采用全连接神经网络对Attention模型进行改进,提出了NN-Attention.为了加速模型的训练,采用的循环神经网络为GRU.实验采用CSTSD数据集,并用TensorFlow完成模型的构建.实验结果表明,该模型在CSTSD数据集中可以较好地实现文本摘要的自动生成. 相似文献
87.
基于会话的推荐方法旨在根据匿名用户行为序列预测下一个项目。然而,现有会话推荐方法多基于当前会话建模用户偏好,忽略了会话间蕴含的语义信息及知识图谱中丰富的实体和关系信息,无法有效缓解数据稀疏性的问题。提出一种基于跨会话信息与知识图谱的图注意力网络推荐方法。通过有效整合跨会话信息和知识图谱中的项目知识构建跨会话知识图谱,利用知识感知的注意力机制计算各邻居节点的重要性分数,以更新项目节点表示,采用门控循环单元和图注意力网络将每个会话表示为该会话的当前偏好和全局偏好的组合。在此基础上,将会话嵌入和项目嵌入拼接后输入到多层感知机,得到目标会话和候选项目的预测分数,从而实现会话推荐。实验结果表明,与GRU4REC、SR-GNN、FGNN等方法相比,该方法在KKBOX和JDATA两个真实数据集上的推荐命中率分别至少提高了8.23和2.41个百分点,能有效增强会话推荐性能。 相似文献
88.
方面级情感分析目前是基于图卷积神经网络(GCN)来整合句子的语法结构,它能够有效地解决长范围词汇依赖不准确的问题,但GCN却拥有不必要的复杂性和冗余计算。此外,它忽略了属性与上下文之间相对位置的关系。为此,提出了一种新的模型来解决上述问题。首先建立双向GRU层,接着使用位置感知转换增加靠近方面词的上下文词的重要程度,然后通过移除非线性和折叠连续层之间的权重矩阵来降低复杂性;再与特定屏蔽层进行融合实现单层MASGC结构,生成一种新的基于检索上下文的注意力机制;最后通过全连接层给出分类结果。该模型在五个数据集上进行了大量实验,实验结果表明其具有更高的准确率和更少的训练时间。 相似文献
89.
90.
为了克服因风速信号固有的震动性、非线性特性引起的预测精度不高的问题, 本文提出了使用集合经验模态分解算法和门控循环单元两种方法相结合的组合模型对风速进行预测. 该模型首先对数据进行归一化处理, 使用孤立森林算法, 剔除异常点, 然后用EEMD (ensemble empirical mode decomposition)方法, 将风速拆分成不同尺度的信号, 消除数据的非平稳性, 将分解得到的相对平稳的分量信号分别送入GRU (gated recurrent unit)模型进行训练, 获得各自的预测结果, 最终风速由所有分量各自预测的结果累加得到. 实验中采用实地采集数据进行实验, 结果证实, EEMD-GRU方法相较于目前主流的EEMD-LSTM、EMD-LSTM等方法, 预测精度有明显提升. 相似文献