首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   3篇
  国内免费   1篇
化学工业   20篇
金属工艺   110篇
机械仪表   3篇
建筑科学   1篇
能源动力   6篇
轻工业   13篇
武器工业   10篇
一般工业技术   35篇
冶金工业   30篇
原子能技术   2篇
自动化技术   1篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   213篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有231条查询结果,搜索用时 15 毫秒
81.
Abstract

In the casting processes, the heat transfer coefficient at the metal/mould interface is an important controlling factor for the solidification rate and the resulting structure and mechanical properties. Several factors interact to determine its value, among which are the type of metal/alloy, the mould material and surface conditions, the mould and pouring temperatures, casting configuration, and the type of gases at the interfacial air gap formed. It is also time dependent. In this work, the air gap formation was computed using a numerical model of solidification, taking into consideration the shrinkage and expansion of the metal and mould, gas film formation, and the metallostatic pressure. The variation of the air gap formation and heat transfer coefficient at the metal mould interface are studied at the top, bottom, and side surfaces of Al and Al–Si castings in a permanent mould in the form of a simple rectangular parallelepiped. The results show that the air gap formation and the heat transfer coefficient are different for the different casting surfaces. The bottom surface where the metallostatic pressure makes for good contact between the metal and the mould exhibits the highest heat transfer coefficient. For the sidewalls, the air gap was found to depend on the casting thickness as the larger the thickness the larger the air gap. The air gap and heat transfer coefficient also depend on the surface roughness of the mould, the alloy type, and the melt superheat. The air gap is relatively large for low values of melt superheat. The better the surface finish, the higher the heat transfer coefficient in the first few seconds after pouring. For Al–Si alloys, the heat transfer coefficient increases with increasing Si content.  相似文献   
82.
Abstract

Inclusion assisted microstructure control has been a key technology to improve the toughness of C–Mn and low alloy steel welds over the last two to three decades. The microstructure of weld metals and heat affected zones (HAZs) is known to be refined by different inclusions, which may act as nucleation sites for intragranular acicular ferrite and/or to pin austenite grains thereby preventing grain growth. In the present paper, the nature of acicular ferrite and the kinetics of intragranular ferrite transformations in both weld metals and the HAZ of steels are rationalised along with nucleation mechanisms. Acicular ferrite development is considered in terms of competitive nucleation and growth reactions at austenite grain boundary and intragranular inclusion nucleation sites. It is shown that compared to weld metals, it is difficult to shift the balance of ferrite nucleation from the austenite grain boundaries to the intragranular regions in the HAZ of particle dispersed steels because inclusion densities are lower and the surface area available for ferrite nucleation at the austenite grain boundaries tends to be greater than that of intragranular inclusions. The most consistent explanation of high nucleation potency in weld metals is provided by lattice matching between ferrite and the inclusion surface to reduce the interfacial energy opposing nucleation. In contrast, an increase in the thermodynamic driving force for nucleation through manganese depletion of the austenite matrix local to the inclusion tends to be the dominant nucleation mechanism in HAZs. It is demonstrated that these means of nucleation are not mutually exclusive but depend on the nature of the nucleating phase and the prevailing transformation conditions. Issues for further improvement of weldment toughness are discussed. It is argued that greater numbers of fine particles of a type that preferentially nucleate acicular ferrite are required in particle dispersed steels to oppose the austenite grain boundary ferrite transformation and promote high volume fractions of acicular ferrite and thereby toughness.  相似文献   
83.
《应用陶瓷进展》2013,112(1):37-41
Abstract

Knowledge of relative heat resistance as well as thermo-mechanical behaviour of refractory castables is very important for their use as linings in high temperature furnaces and refining vessels in the metallurgical, cement, and petrochemical industries. The present work aims at studying these properties for different types of refractory castable. Two classes of castable were prepared, namely ultralow and zero cement, containing either high alumina cement or hydratable alumina as bonding agent. For each class, two different castable systems were prepared, one containing an alumina-silica mixture in its matrix and the other containing magnesia-alumina. In all castables studied, calcined alumina was used as aggregate. The prepared castable samples were subjected to firing temperatures up to 1500°C. Relative heat resistance, bending strength before and after thermal cycling, hot modulus of rupture, and creep deformation were measured according to international standard specifications. It was concluded that a limited content of cement (ultralow cement castables) is beneficial with the magnesia-alumina mix in the matrix owing to the formation of calcium hexaluminate-magnesium aluminate-corundum (matrix advantage system) that results in excellent relative heat resistance as well as thermome-chanical properties. Zero cement castables on the other hand are recommended for use with the alumina-silica mixture, since the absence of cement improves the chances of mullite formation without glassy phases, thereby enhancing the properties of such refractory castables.  相似文献   
84.
《应用陶瓷进展》2013,112(3):178-182
Abstract

Effects of heat treatment conditions on phase transformation, microstructure and thermal expansion coefficient (TEC) in MgO–Al2O3–SiO2 system glass–ceramics were investigated by means of differential thermal analysis, X-ray diffraction and scanning electron microscopy. The magnesium aluminium titanate (MAT) precipitated firstly at 850°C and β-quartz solutions (β-QSS) formed at 950°C. Further increasing temperature to 1000°C, MAT disappeared and β-QSS became master phase, following little amount of α-cordierite, MgTi2O5, rutile and sapphirine. When glass was treated at 1050°C, β-QSS content decreased and α-cordierite became master phase. As temperature reached higher than 1100°C, β-QSS and sapphirine disappeared, and α-cordierite became master phase accompany with rutile and MgTi2O5 as secondary phase. The microstructure transformed gradually from particle shape crystallites to slat shape network with the increase in heat treatment temperature. By controlling heat treatment condition, an ideal glass–ceramics with proper TEC for matching sealing to 4J29 alloy has been obtained.  相似文献   
85.
Abstract

Powder die compaction is modelled using the finite element method and a phenomenological material model. The Drucker–Prager cap model is modified with the goal to describe the formation of cracks during powder transfer, compaction, unloading, and ejection of the parts from the die. This is achieved by considering the cohesive strength and the cohesion slope, which characterise the current strength of the powder compact in the Drucker–Prager model, as state dependent variables. Evolution equations are formulated for these variables, so that the strength increases by densification and decreases by forced shear deformation. Some of the parameters appearing in the evolution equations are determined from measured green strength values. An iron based powder (Distaloy AE) is used for the experiments. Examples are shown to demonstrate that the density distribution can be calculated accurately as compared with an experiment, that cracking can be modelled at least qualitatively correctly, and that the compaction of complex 3D parts can be simulated.  相似文献   
86.
《粉末冶金学》2013,56(4):291-297
Abstract

The grey iron microstructure Fe–2C–2Si powder based compact is tailored by different kinds of in situ and post sintering processing. This has been achieved by combining thermodynamic and kinetics modelling of microstructure development with sintering and controlled heat treatment experiments of tensile test specimens die compacted at 600 MPa. Applying optimised sintering conditions led to a grey iron like microstructure with 95% relative sintered density. Sinter hardening the compacts led to 500 MPa in yield strength and 600 MPa in ultimate tensile strength in combination with ductile fracture. Quenched and tempered condition showed the same strength values, but combined with brittle fracture due to martensitic structure. Pore rounding and partial pore filling by graphite were obtained by austenising isothermal hold during the cooling of the sintering cycle.  相似文献   
87.
《钢铁冶炼》2013,40(5):415-421
Abstract

Cast steel blast furnace (BF) cooling staves are widely used in the Chinese steel industry. A heat transfer mathematical model of a BF cast steel cooling stave has been developed and verified by thermal state experiments. Calculation of a cooling stave working under steady state has been carried out based on the model. Effects of two factors, thickness of scale on the cooling water pipes and gas clearance between the pipes and main body, which are difficult for experimental measurement but determined mathematically, on the temperature field of the stave body are discussed. The results indicate that much importance should be attached to the two factors during manufacturing of cooling staves as they highly influence cooling capability of cooling stave and hence BF operation.  相似文献   
88.
《钢铁冶炼》2013,40(1):39-44
Abstract

A numerical study of the arc plasma and molten bath in a dc electric arc furnace (EAF) is useful for understanding and improving the production process of the dc EAF. In the present paper, a mathematical model based on conservation equations of mass, momentum and energy along with Maxwell's equations is developed to describe the flow field and heat transfer in the arc and molten bath regions of a dc EAF simultaneously. The governing equations are solved using the PHOENICS software package. The calculated results show good agreement with those of previous studies, giving a useful insight into the factors of arc heat transfer and bath circulation.  相似文献   
89.
《钢铁冶炼》2013,40(6):495-502
Abstract

The heat transfer coefficient during film boiling at the runout table of the hot strip mill is usually determined by experimental methods. Described in the present paper is a finite difference based model for analysis of the thermal behaviour of the strip during cooling at the runout table of the hot strip mill at Tata Steel, India. The model, developed for the prediction of strip temperature, is used to determine the heat transfer coefficient at the water/strip interface while water cooling occurs. A simple form of polynomial as a function of the strip surface temperature is proposed to describe the heat transfer coefficient at the water/strip interface. Good correlation has been found between model predicted temperatures considering the polynomial type heat transfer coefficient and the actual coiling temperature.  相似文献   
90.
《钢铁冶炼》2013,40(2):147-153
Abstract

There are several motivations for minimising slag entrainment during the teeming of steelmaking ladles. Cleaner steel, improved yield, and higher productivity are all at stake. As one of several identifiable contributors to slag entrainment, vortexing has received considerable attention in the past decade and a half. What is commonly referred to as 'vortexing' in fact comprises two distinct phenomena, namely, vortexing funnels and non-vortexing funnels, each controlled by entirely different sets of variables. Dimensionless correlations describing the two phenomena were determined, and validated, using separate sets of dimensional analyses and appropriately designed scale model experiments. The importance of these findings to the teeming of steel is discussed. Performance results of a patented 'vortex buster' device, developed on the basis of the understanding gained from these studies, and validated in water models as well as in a 12 ton tundish, are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号