排序方式: 共有32条查询结果,搜索用时 0 毫秒
31.
Kohei KuboHajime Iida Seitaro NambaAkira Igarashi 《Microporous and mesoporous materials》2012,149(1):126-133
The catalytic cracking of n-heptane has been performed over HZSM-5 catalysts with various Si/Al ratios at 723-923 K to form light olefins selectively. The HZSM-5 zeolites with various acid site densities exhibited almost the same selectivity at the same conversion. The ethylene + propylene selectivity increased, while the propylene/ethylene ratio decreased with an increase in reaction temperatures. It is found that a high temperature is required to obtain a high ethylene + propylene yield. The highest ethylene + propylene yield obtained in this study was 59.7 C-% with a propylene/ethylene ratio of ca. 0.72 at 99.6% conversion over HZSM-5 (Si/Al = 31) at 923 K. Moreover, it is concluded from the selectivities and activation energies that the monomolecular cracking is predominant at a high temperature as 923 K. 相似文献
32.
Technical and pure grades of the combustibles heptane and dodecane were used in a series of small-scale fire tests conducted in a 1 m3 compartment that was mechanically ventilated at 5 and 8 air changes per hour (ACH). Combustible mass loss rates, soot mass concentrations, soot size distributions, several gas species concentrations, and compartment temperatures were measured during the fire. Results for the two pure-grade hydrocarbons were compared with results obtained for their respective technical grades. Technical-grade dodecane produced the highest soot emissions; pure n-heptane produced the lowest. Soot size distributions of all four combustibles attained a steady profile whose modal diameter was about 200 nm. Underventilated fires showed higher carbon monoxide yields than soot yields. Both compartment ventilation rates produced similar results, although the fire self-extinguished earlier for 5 ACH. 相似文献