首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   0篇
  国内免费   1篇
化学工业   97篇
金属工艺   90篇
机械仪表   14篇
轻工业   17篇
石油天然气   1篇
一般工业技术   29篇
冶金工业   9篇
自动化技术   7篇
  2020年   1篇
  2013年   262篇
  2007年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
21.
Abstract

It is difficult to weld the dissimilar material combination of aluminium alloys and low alloy steels using fusion welding processes, on account of the formation of a brittle interlayer composed of intermetallic compound phases and the significant difference in physical and mechanical properties. In the present work an attempt has been made to join these materials via the friction welding method, i.e. one of the solid phase joining processes. In particular, the present paper describes the optimisation of friction welding parameters so that the intermetallic layer is narrow and joints of acceptable quality can be produced for a dissimilar joint between Al-Mg-Si alloy (AA6061) and Ni-Cr-Mo low alloy steel, using a design of experiment method. The effect of post-weld heat treatment on the tensile strength of the joints was then clarified. It was concluded that the friction time strongly affected the joint tensile strength, the latter decreasing rapidly with increasing friction time. The highest strength was achieved using the shortest friction time. The highest joint strength was greater than that of the AA6061 substrate in the as welded condition. This is due to the narrow width of the brittle intermetallic layer generated, which progressed from the peripheral (outer surface) region to the centreline region of the joint with increasing friction time. The joints in the as welded condition could be bent without cracking in a bend test. The joint tensile strength in the as welded condition was increased by heat treatment at 423 K (150° C), and then it decreased when the heat treatment temperature exceeded 423 K. All joints fractured in the AA6061 substrate adjacent to the interface except for the joints heated at 773 K (500° C). The joints fractured at the interface because of the occurrence of a brittle intermetallic compound phase.  相似文献   
22.
Abstract

Friction stir welding (FSW) experiments with different panel dimensions and welding parameters have been designed to study the distortion of FSW. The FSW experiments were carried out with a load control facility to make the welding parameters reliable. The distortion of FSW is much smaller than that of arc welding, but it is still very significant. Three-dimensional distortion measuring system was applied to further study distortion trends. The results show that the distortion after FSW is in saddle shape, with convex bending in longitudinal direction and concave bending in transverse direction. This distortion pattern is in contrary with that of traditional arc welding. It is also found that increasing the panel length increases the longitudinal distortion but almost do not influence the transverse distortion. Increasing the rotation speed increases both longitudinal distortion and transverse distortion. The influence of welding speed on distortion is not very clear.  相似文献   
23.
Abstract

Similar and dissimilar friction stir welds made of aluminium alloys 2017-T6 and 6005A-T6 are compared in terms of heat inputs, temperatures, material flow distributions and resulting local and overall tensile properties. Similar welds are systematically hotter and weaker than the dissimilar welds. Predictions of a three-dimensional finite element model of the tensile test transverse to the weldline are assessed towards local deformation fields measured by digital image correlation. Deformation systematically localises on the weakest heat affected zone, which is on the 6005A side in the dissimilar welds.  相似文献   
24.
Abstract

Experimental measurements were made to determine the peak temperatures during friction stir welding of Ti–6Al–4V alloy as a function of the processing conditions such as tool rotation speed and feedrate. It was found that the spindle speed has a dominant effect on peak temperatures, while feedrate controls exposure time. Low spindle speed conditions lead to peak temperatures near, or below, the beta transus temperature of the material, 1000°C (1800°F), while high spindle speed welds result in peak temperatures above 1200°C (2100°F). Weld microstructures were also evaluated as a function of the weld parameters. Higher spindle speeds and lower federate lead to increased grain size.  相似文献   
25.
Abstract

The effects of weld tool rotational speed ω, welding speed v and z-axis force FZ during friction stir welding of the aluminium alloy 2524-T351 on the resulting process response variables, nugget microstructure, nugget tensile properties and heat affected zone hardness variations were investigated. For the range of conditions examined, the results indicate that ω has the dominant effect on nugget properties and structure, that optimum nugget tensile properties can be obtained by increasing ω to obtain a peak temperature that is just below the incipient local melting temperature, and that excessive values of ω result in low nugget ductility because of localised embrittlement near the weld crown. The study has also shown that the peak weld temperature is inversely related to the measured torque T 0. The T 0ω relationship appears to be a useful guide for weld modification, as it is indicative of conditions leading to overheating in the nugget region.  相似文献   
26.
Abstract

The peak temperatures during friction stir spot welding of similar and dissimilar aluminium and magnesium alloys are investigated. The peak temperatures attained during friction stir spot welding of Al 6111, Al 2024, and AZ91 are within 6% of their solidus temperatures. In dissimilar AZ91/Al 6111 spot welds the peak temperature corresponds with the α-Mg solid solution and Mg17Al12 eutectic temperature of 437°C. An a-Mg plus Mg17Al12 eutectic microstructure is produced in dissimilar friction stir spot welds when material displaced during pin penetration into the lower sheet material contacts the upper sheet material at the eutectic temperature.  相似文献   
27.
Abstract

This paper describes friction welded joint properties of super fine grained steel (SFGS) and discusses improvements in these joint properties. The average grain size diameter of the SFGS base metal is ~0·6 μm, and its ultimate tensile strength is 660 MPa. The joint, made by a continuous drive friction welding machine (conventional method), fractured at the welded interface even though it possessed 100% joint efficiency. This was due to both the coarsening of the grain size and the softening of the welded interface with its adjacent region caused by heat input during braking times. The authors developed a joining method using a continuous drive friction welding machine that has an electromagnetic clutch to eliminate heat input during braking time, which was called the 'low heat input friction welding method' (LHI method). The joint obtained by the LHI method had the same tensile strength as the base metal at the friction time when the friction torque reached the initial peak. That is, the joint obtained 100% joint efficiency and fractured at the base metal, although the adjacent region of the welded interface softened only slightly. The grain size of this joint was smaller than that obtained by the conventional method. It was clarified that the optimum friction welded joint of the SFGS could be obtained by the LHI method in comparison with the conventional method.  相似文献   
28.
Abstract

As a solid state joining technique, friction stir welding (FSW) can produce high strength, low distortion joints efficiently. Compared to fusion welding, residual stresses in FSW joints are expected to be low due to a relatively low heat input. However, apart from the heat input, the force from the tool also plays an important role in the development of welding stresses. In the present paper, a semicoupled thermomechanical finite element model containing both thermal load and mechanical load was established to simulate the development of welding stresses during FSW process; an autoadapting heat source model was employed in the thermal analysis; the fixture was also included in the mechanical analysis model. The simulation results showed that due to the effect of the tool force, the longitudinal residual tensile stresses became smaller and were asymmetrically distributed at different sides of the weld centre; the peak of the tensile residual stresses at the retreating side was lower than that at the advancing side. Calculated and experimental results were compared.  相似文献   
29.
Abstract

The aim of this study was to investigate the effect of tool tilt angle on friction stir welding (FSW) of polyethylene (PE). The samples were longitudinally butt welded with double passes of rotating cylindrical shouldered tool in a milling machine for different tool tilt angles. The welding parameters had significant effects on tensile properties and fracture locations of the welds. The tensile strength decreased with increasing tool tilt angle. The thickness of the welding zone decreased with increasing tool tilt angle which affects the tensile strength. The interface line between weld passes was formed shorter for the higher welding speeds because of the less effect of the frictional heat.  相似文献   
30.
Abstract

Novel test rigs are described for the study of the corrosion of metal specimens under controlled heat fluxes. In the corrosion of stainless steels in nitric acid, tests at various heat fluxes with steel surface temperature kept constant have shown that the cooler acid present at the surface under higher heat fluxes leads to slightly smaller corrosion rates than under isothermal conditions. Crevice corrosion can develop under the gasket sealing the stainless steel specimen to the test cell. This crevice corrosion can produce enhanced corrosion rates (by factors up to 100), not only on surfaces within the crevice, but also on those external to the crevice. The factors influencing the development of crevice corrosion are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号