首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   0篇
  国内免费   1篇
化学工业   97篇
金属工艺   90篇
机械仪表   14篇
轻工业   17篇
石油天然气   1篇
一般工业技术   29篇
冶金工业   9篇
自动化技术   7篇
  2020年   1篇
  2013年   262篇
  2007年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
71.
The tension at the interfaces separating the three phases of matter is a unique property in that it can reveal a great deal of information about the phases in contact, including the direction and extent of mass transfer of components, their proximity to equilibrium, the nature of fluids distribution relative to one another, the contact angle, and the spreading and adhesion behavior of liquids on solid surfaces. In this paper we examine, with supporting experimental data, the multitude of roles played by interfacial tension in establishing (1) the phase behavior characteristics of solubility, miscibility, and the associated mass transfer mechanisms in multicomponent fluid systems, (2) the nature of fluids distribution in gas–oil–water systems in porous solid substrates and (3) the spreading and adhesion characteristics in solid–liquid–liquid systems through dynamic contact angles.  相似文献   
72.
Adhesion in composite materials is often quantified using the single fiber fragmentation (SFF) test. While this method is believed to provide accurate values for the fiber–matrix interfacial shear strength (IFSS), these may not accurately reflect the macroscopic mechanical properties of specimens consisting of tows of thousands of tightly spaced fibers embedded in a resin matrix. In these types of specimens, adhesion may be mitigated by fiber twisting and misalignment, differences in the resin structure in the confined spaces between the fibers and, most importantly, by any incompleteness of the fiber wetting by the resin. The present work implements fiber band fragmentation (FBF) testing to obtain effective interfacial shear strengths, whose values reflect the importance of these factors. The fiber fragmentation in these specimens is tracked through the counting and sorting of acoustic emission (AE) events occurring during the tensile testing of the specimen and yields the average critical fiber fragment length. AE results, in conjunction with stress-strain data, show that fiber breakage events occur at acoustic wavelet amplitudes substantially greater than those generated by fiber/matrix debonding. Kelly–Tyson analysis is applied, using the measured critical fiber fragment length together with known values for the fiber diameter and tensile strength to yield the effective IFSS. FBF tests are performed on carbon fiber/poly(vinyl butyral) (PVB) dog-bone fiber-bundle systems, and effective IFSS values substantially lower than those typically reported for the single fiber fragmentation testing of similar systems are obtained, suggesting the importance of multi-fiber effects and incomplete fiber wetting.  相似文献   
73.
The van der Waals interaction (vdW) is a fundamental interaction in colloid and interface science. Regardless of the methods used in deriving the vdW interaction between two bodies as a function of their separation distance, the Hamaker constant is always an essential parameter involved. In this paper, a simple experimental method is presented to determine the Hamaker constant. As an example, the Hamaker constant of a solid-water-oil system is related to its surface and interfacial energies, which can be measured accurately. Based on the proposed method, the effects of two typical solid surfaces and three kinds of aqueous solutions on the Hamaker constant and wettability of the solid-water-oil system are studied. It is found that hydrophilic and hydrophobic solid surfaces will lead to rather different Hamaker constants and wettability behaviour. The detailed experimental results also show that the ionic surfactant solutions have a strong influence, whereas the pH value of the aqueous phase has a limited effect on the Hamaker constant. In addition, the electrolyte solutions do not strongly affect the Hamaker constant for the oil phase interacting with the solid surface across an electrolyte solution. Such determined Hamaker constants are in reasonable agreement with the reported Hamaker constants for oils (dodecane and hexadecane), mica, and metals (Ag, Au, and Cu) interacting across a pure water phase.  相似文献   
74.
《应用陶瓷进展》2013,112(4):158-160
Abstract

Barium holmium niobate Ba2HoNbO6 (BHNO) has been developed as a new substrate for (Bi,Pb)2Sr2Ca2Cu3Ox (Bi(2223)) superconductor film. Ba2HoNbO6 has a cubic perovskite structure with lattice constant a = 8·26 Å. The dielectric constant and loss factor of this material are in a range suitable for its use as a substrate for microwave applications. The Bi(2223) superconductor shows no detectable chemical reaction with BHNO, even under extreme processing conditions. Dip coated Bi(2223) thick film on Ba2HoNbO6 substrate had T c(0) of 109 K and current density of around 4 × 103 A cm - 2 at 77 K and in zero magnetic field.  相似文献   
75.
Abstract

A technique is described that allows the friction of rubber on metal at high pressures (up to 15 MPa) to be measured. A series of experiments were performed investigating the behaviour of rubber under these conditions and the effects that the track surface texture had. It was found that Thirion's law remained effective for describing the friction of rubber under these conditions. It was also observed that, at ~5 MPa, a crossover occurred and at higher pressures, the smooth tracks resulted in lower friction.  相似文献   
76.
《Advanced Robotics》2013,27(10):1075-1105
In this paper we present a simulation environment for humanoid robots with a precise and efficient method of handling ground contact, and experiments empirically validating the simulator. Highly accurate dynamic simulation is an essential tool for research and development in humanoid robotics, and a simulator should ideally provide a transparent interface with pathways for control and sensing information identical to those of the actual robot(s) it models. We identified ground contact as the chief source of divergence from reality in work to date and have tackled this problem by developing an algorithm for resolving ground contact for humanoid robots. Our objective was to produce an algorithm that is accurate, efficient and easy to implement. The algorithm is general with respect to the complexity of the foot model; is based on empirically measurable characteristics of the foot–ground interaction, i.e., friction, which we have obtained using experiments described; provides an exact implementation of the Coulomb friction model (avoiding polyhedral approximation of the friction cone); runs in real-time; is also amenable to a straightforward accuracy–speed trade-off; and is relatively easy to implement as a constraint selection method. The simulation environment embodies generality, and we have applied it to two different humanoid robots, Hoap-2 and CB. We present experiments comparing the results of simulation with identical motions performed by real robots, and comparing the full contact resolution algorithm, the modification trading accuracy for computational speed and a penalty-based method.  相似文献   
77.
This paper describes the development of a mathematical model and application of the numerical results to predict the adhesion forces between wheels and rails. The adhesion force is realized on a small area of a wheel–rail contact. Many factors have an influence on the adhesion process for these surfaces (e.g., environment, pollution, parameters and conditions of railway vehicle service, track, etc.). The paper focuses on different modelling aspects. Experimental investigation on the process of friction in the contact zone was performed. The data obtained were used to create a mathematical model. The adhesion, which is dependent on load from the wheel to the rail, temperature, friction conditions in the contact zone and wheel slip, was calculated. Finally, a quick method to determine the adhesion force between the wheels (wheel pair) of a railway vehicle and rails (rail track) is presented.  相似文献   
78.
Abstract

Friction welding is now well established as a means of joining many different types of materials, because it has proved itself to be a reliable and economical way of producing high quality welds. The present paper introduces different friction welding processes, their advantages and shortcomings. The history of friction welding and typical applications are also reviewed. In the context of friction welding, a number of subjects, such as frictional behaviour, joining mechanism, interface temperature and heat generation, still exist, where different concepts for explanation of the physical mechanisms have been proposed by different investigators. To clarify some inconsistencies in the interpretation of the friction welding process, a thorough review and critical assessment of the literature associated with this process is attempted.  相似文献   
79.
Abstract

Pitting Corrosion behaviour of similar and dissimilar metal welds of three classes of stainless steels, namely, austenitic stainless steel (AISI 304), ferritic stainless steel (AISI 430) and duplex stainless steel (AISI 2205), has been studied. Three regions of the weldment, i.e. fusion zone, heat affected zone and unaffected parent metal, were subjected to corrosion studies. Electron beam and friction welds have been compared. Optical, scanning electron microscopy and electron probe analysis were carried out to determine the mechanism of corrosion behaviour. Dissimilar metal electron beam welds of austenitic–ferritic (A–F), ferritic–duplex (F–D) and austenitic–duplex stainless steel (A–D) welds contained coarse grains which are predominantly equiaxed on austenitic and duplex stainless steel side while they were columnar on the ferritic stainless steel side. Microstructural features in the central region of dissimilar stainless steel friction welds exhibit fine equiaxed grains due to dynamic recrystallisation as a result of thermomechanical working during welding and is confined to ferritic stainless steel side in the case of A–F, D–F welds and duplex stainless steel side in the case of D–A welds. Beside this region bent and elongated grains were observed on ferritic stainless steel side in the case of A–F, D–F welds and duplex stainless steel side in the case of D–A welds. Interdiffusion of elements was significant in electron beam welding and insignificant in friction welds. Pitting corrosion has been observed to be predominantly confined to heat affected zone (HAZ) close to fusion boundary of ferritic stainless steel interface of A–F electron beam and D–F electron beam and friction weldments. The pitting resistance of stainless steel electron beam weldments was found to be lower than that of parent metal as a result of segregation and partitioning of alloying elements. In general, friction weldments exhibited better pitting corrosion resistance due to lower incidence of carbides in the microstructure.  相似文献   
80.
Abstract

This paper describes the joining phenomena and joint strength of friction welded joints between pure aluminium (P-Al) and low carbon steel friction welds. When the joint was made at a friction pressure of 30 MPa with a friction speed of 27·5 s?1, the upsetting (deformation) occurred at the P-Al base metal. P-Al transferred to the half radius region of the weld interface on the low carbon steel side, and then it transferred toward the entire weld interface. When the joint was made at a friction time of 0·9 s, i.e. just after the initial peak of the friction torque, it had ~93% joint efficiency and fractured on the P-Al side. This joint had no intermetallic compound at the weld interface. Then, the joint efficiency slightly decreased with increasing friction time. The joint had a small amount of intermetallic compound at the peripheral region of the weld interface when it was made at a friction time of 2·0 s. When the joint was made at a friction time of 0·9 s, the joint efficiency decreased with increasing forge pressure, and all joints were fractured at the P-Al side. Although the joint by forge pressure of 90 MPa had hardly softened region, it had ~83% joint efficiency. To clarify the fact of decreasing joint efficiency, the tensile strength of the P-Al base metal at room temperature was investigated, and the tensile test was carried out after various compression stresses and temperatures. The tensile strength of the P-Al base metal has decreased with increasing compression stress at any temperature. Hence, the fact that the joint did not achieve 100% joint efficiency was due to the decrease in the tensile strength of the P-Al base metal by the Bauschinger effect. To obtain higher joint efficiency and fracture on the P-Al side, the joint should be made without higher forge pressure, and with the friction time at which the friction torque reaches the initial peak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号