首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   2篇
电工技术   1篇
综合类   2篇
化学工业   62篇
金属工艺   3篇
机械仪表   1篇
建筑科学   38篇
能源动力   2篇
轻工业   90篇
水利工程   2篇
石油天然气   11篇
一般工业技术   6篇
原子能技术   10篇
自动化技术   4篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   12篇
  2013年   15篇
  2012年   12篇
  2011年   23篇
  2010年   23篇
  2009年   13篇
  2008年   17篇
  2007年   14篇
  2006年   16篇
  2005年   9篇
  2004年   5篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1980年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
31.
C. difficile spores are resistant to routine cleaning agents and are able to survive on inanimate surfaces for long periods of time. There is increasing evidence of the importance of the clinical environment as a reservoir for pathogenic agents and as a potential source of healthcare-associated infections (HCAIs). In this context, to reduce the risk of cross-transmission, terminal disinfection of hospital wards and isolation rooms using hydrogen peroxide vapor (HPV) is attracting attention. Spores of C. difficile (ribotype 027) were exposed to constant concentrations of HPV ranging between 11 and 92 mg m?3 (ppm) for a range of exposure times in a specially designed chamber. The inactivation data thus obtained was fitted using the modified Chick–Watson inactivation model to obtain decimal reduction values (D values). D values ranged from 23 to 1.3 min at HPV concentrations of 11 and 92 ppm, respectively. We present a simple mathematical model based on the inactivation kinetic data obtained here to estimate the efficacy of commercial HPV processes used in healthcare environmental decontamination. C. difficile spores showed linear inactivation kinetics at steady HPV concentrations ranging between 10 and 90 ppm. The data obtained here was used to provide estimates of the inactivation efficacy of commercial HPV process cycles, which employ unsteady HPV concentrations during the decontamination process.  相似文献   
32.
The aim of this study was to model the inactivation of Salmonella enterica serovar Enteritidis in pasteurized omelet internally inoculated at different microwave heating treatments (300 W; 450 W, 600 W and 800 W). Results indicated a non significant change in Salmonella populations during the first 30 s treatment at 300 W and 450 W, being log reductions lower than 0.5 log CFU g−1. However, after 40 s treatment, log reductions had risen to 4.8 log CFU g−1 at 800 W. Inactivation rates were higher at 600 W and 800 W (0.67 and 0.63 s−1) than at 300 W and 450 W (<0.34 s−1). The temperature-dependent parameters of a Weibull model obtained by Mattick, Legan, Humphrey & Peleg (2001) were evaluated. It was concluded that combinations characterized by a temperature equal or above 70 °C ensured a minimum 4 log reduction of Salmonella population (i.e. 300 W-80 s; 450 W-60 s or 600 W/800 W-40 s). These results may be of value in food service establishments, as target treatments for microwavable potato omelet portions.  相似文献   
33.
In the present study, low-pressure glow discharge plasma was used for surface decontamination of the common food packaging materials, namely glass, polyethylene, polypropylene, nylon, and paper foil. Low-pressure air plasma was generated over a vacuum pressure range of 0.5–5.0 Torr, and at a power density range of 12.4–54.1 mW/cm3. Compared to plasma-unexposed surfaces, no significant changes in optical properties, color characteristics, surface temperatures, tensile strengths, and deformation strains were observed with plasma-exposed surfaces. On plasma exposure of food pathogens-loaded packaging materials surfaces, as high as 4-log reduction (99.99%) in viable cell counts of tested food pathogens, especially Escherichia coli O157:H7 and Staphylococcus aureus, was observed within 5 min. And, the pathogens inactivation pattern can be better explained by Singh-Heldman model. Therefore, low-pressure air plasma was shown to be effective for inactivation of major foodborne pathogens, and different food packaging materials can be decontaminated using the plasma without adversely affecting their physical properties.  相似文献   
34.
Growth, growth boundary and inactivation models have been extensively developed in predictive microbiology and are commonly applied in food research nowadays. Few studies though report the development of models which encompass all three areas together. A tiered modelling approach, based on the Gamma hypothesis, is proposed here to predict the behaviour of Listeria.Datasets of Listeria spp. behaviour in laboratory media, meat, dairy, seafood products and vegetables were collected from literature, unpublished sources and from the databases ComBase and Sym'Previus. The explanatory factors were temperature, pH, water activity, lactic and sorbic acids. For the growth part, 697 growth kinetic datasets were fitted. The estimated growth rates and 2021 additional growth primary datasets were used to fit the secondary growth models. In a second step, the fitted model was used to predict the growth/no-growth boundary. For the inactivation modelling phase, 535 inactivation curves were used.Gamma models with and without interactions between the explanatory factors were used for the growth and boundary models. The correct prediction percentage (predicted growth when growth is observed + predicted inactivation when inactivation is observed) varied from 62% to 81% for the models without interactions, and from 85% to 87% for the models with interactions. The median error for the predicted population size was less than 0.34 log10(CFU/mL) for all models. The kinetics of inactivation were fitted with modified Weibull primary models and the estimated bacterial resistance was then modelled as a function of the explanatory factors. The error for the predicted microbial population size was less than 0.71 log10(CFU/mL) with a median value of less than 0.21 for all foods.The model enables the quantification of the increase or decrease in the bacterial population for a given formulation or storage condition. It might also be used to optimise a food formulation or storage condition in the case of a targeted increase or decrease of the bacterial population.  相似文献   
35.
36.
The inactivation of pectinesterase (PE) in a commercial enzyme formulation (CEF) under pulsed electric fields (PEF) was studied. Samples of an aqueous solution of the CEF were exposed to exponential waveform pulses for up to 16 ms at electric field intensities ranging from 5 to 24 kV cm–1. Pulses were delivered in monopolar mode. The observed inactivation of the enzyme was described by several kinetics and regarding the input of electrical energy density (Q) models using Bayesian non-linear regression. Posterior distributions of the characteristic parameters for each kinetic model (based on the Hülsheger or the Weibull equation) and each Q model (based on exponential decay or the Weibull equation) were obtained. Kinetics models based on the Weibull equation showed better goodness and accuracy than the other models.  相似文献   
37.
M.I. Bazhal  G.S.V. Raghavan 《LWT》2006,39(4):420-426
Inactivation of Escherichia coli O157:H7 in liquid whole egg using thermal and pulsed electric field (PEF) batch treatments, alone and in combination with each other, was investigated. Electric field intensities in the range from 9 to 15 kV/cm were used in the study. The threshold temperature for thermal inactivation alone was 50 °C. PEF enhanced the inactivation of E. coli O157:H7 when the sample temperature was higher than the thermal threshold temperature. The maximum inactivation of E. coli O157:H7 obtained using thermal treatment alone was ∼2 logs at 60 °C. However, combined heat and PEF treatments resulted in up to 4 log reduction of the pathogen. The kinetic rate constants kTE for combined treatments at 55 °C varied from 0.025 to 0.119 pulse−1 whereas the rate constants at 60 °C ranged from 0.034 to 0.228 pulse−1. These results indicated a synergy between temperature and electric field on the inactivation of E. coli O157:H7 within a given temperature range.  相似文献   
38.
The individual and combined effects of high pressure carbon dioxide (HPCD) and nisin (200 IU/mL) on the inactivation of Escherichia coli O157:H7 suspended in physiological saline (PS, pH 5.60), phosphate-buffered saline (PBS, pH 5.60 or 7.00) or carrot juice (pH 6.80) were evaluated. The pressure in this study was 5 and 8 MPa, the temperature was 25 °C–45 °C, and the treatment time was 5–65 min. Inactivation of cells in PS (pH 5.60) by HPCD followed first order kinetics, the k (the inactivation rates) increased while the D (decimal reduction time) decreased in the presence of nisin, however, the acid solution dissolving nisin rather than nisin itself played a prominent role in this combination effect with HPCD in PS buffer. The inactivation kinetics of cells in PBS (pH 5.60 or 7.00) and carrot juice (pH 6.80) by HPCD followed slow-to-fast two-stage kinetics and was fitted by the modified Gompertz equation. The M (the time at which the absolute death rate is maximum) significantly decreased in the presence of nisin. HPCD enhanced the sensitization of E. coli to nisin and the time for the complete inactivation was shortened by 2.5–5 min in PBS buffer and carrot juice by combination of HPCD and nisin (HPCD + nisin) than by HPCD alone. Regression coefficients (R2) and mean square error (MSE) were used to evaluate the model performance, indicating that the models could provide a good fitting to the experimental data.  相似文献   
39.
Conditions for theoretical inactivation of Cryptosporidium by ozone could be achieved at full-scale facilities if their design is appropriate. To perform this task correctly the chemical engineer's approach for process design must be applied. This paper discusses the basic equations the estimation of the disinfection efficiency of different ozone reacting systems. Available kinetic data have been integrated in a global model accounting for the hydrodynamics and mass transfer performances of the ozonation reactor. Thus the proposed method allows one to predict Cryptosporidium inactivation level in a given ozonation system. However, if a specified disinfection goal is to be achieved for Cryptosporidium with the developed model it is also possible to choose and optimize the design of the ozone reactor.  相似文献   
40.
Differences in phenotypic responses among strains of the same microbial species constitute an important source of variability in microbiological studies, and as such they need to be assessed, characterized and taken into account. This review provides a compilation of available research data on the strain variability of four basic behavioral aspects of foodborne bacterial pathogens including: (i) virulence; (ii) growth; (iii) inactivation; and (iv) biofilm formation. A particular emphasis is placed on the foodborne pathogens Listeria monocytogenes and Salmonella enterica. The implications of strain variability for food safety challenge studies and microbial risk assessment are discussed also. The information provided indicates that the variability among strains of foodborne bacterial pathogens with respect to their behavior can be significant and should not be overlooked. However, in order for the mechanisms underlying the observed strain variability to be elucidated and understood, phenotypic variability data, such as those reviewed here, should be evaluated in conjunction with corresponding findings of studies assessing the molecular/physiological basis of this variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号