首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64306篇
  免费   18550篇
  国内免费   320篇
电工技术   2887篇
综合类   411篇
化学工业   23312篇
金属工艺   1107篇
机械仪表   1975篇
建筑科学   2750篇
矿业工程   62篇
能源动力   1945篇
轻工业   10539篇
水利工程   410篇
石油天然气   226篇
武器工业   32篇
无线电   9926篇
一般工业技术   17463篇
冶金工业   1059篇
原子能技术   135篇
自动化技术   8937篇
  2024年   36篇
  2023年   134篇
  2022年   361篇
  2021年   711篇
  2020年   3060篇
  2019年   5686篇
  2018年   5154篇
  2017年   5764篇
  2016年   5599篇
  2015年   5445篇
  2014年   5501篇
  2013年   5985篇
  2012年   5138篇
  2011年   4800篇
  2010年   3843篇
  2009年   3424篇
  2008年   3345篇
  2007年   3216篇
  2006年   2939篇
  2005年   2391篇
  2004年   2141篇
  2003年   2029篇
  2002年   1954篇
  2001年   1643篇
  2000年   1455篇
  1999年   805篇
  1998年   85篇
  1997年   95篇
  1996年   70篇
  1995年   54篇
  1994年   41篇
  1993年   42篇
  1992年   34篇
  1991年   22篇
  1990年   29篇
  1989年   20篇
  1988年   20篇
  1987年   10篇
  1986年   13篇
  1985年   13篇
  1984年   10篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
This paper reports a method to produce networks of crystalline gallium oxide comprised of one‐dimensional (1D) nanostructures. Because of the unique arrangement of wires, these crystalline networks are termed as ‘nanowebs’. Nanowebs are of great technological interest since they contain wire densities of the order of 109 cm–2. A possible mechanism for the fast self‐assembly of crystalline metal oxide nanowires involves multiple nucleation and coalescence via oxidation–reduction reactions at the molecular level. The preferential growth of nanowires parallel to the substrate enabled them to coalesce into regular polygonal networks. The individual segments of the polygonal network consist of both nanowires and nanotubules of β‐gallium oxide. Individual wire properties contribute to a nanoweb’s overall capacity and the implications for devices based on nanowebs are expected to be enormous.  相似文献   
102.
103.
In this paper, we report on a novel family of monodisperse thermo‐sensitive core–shell hydrogel microspheres that is featured with high monodispersity and positively thermo‐responsive volume phase transition characteristics with tunable swelling kinetics, i.e., the particle swelling is induced by an increase rather than a decrease in temperature. The microspheres were fabricated in a three‐step process. In the first step, monodisperse poly(acrylamide‐co‐styrene) seeds were prepared by emulsifier‐free emulsion polymerization. In the second step, poly(acrylamide) or poly[acrylamide‐co‐(butyl methacrylate)] shells were fabricated on the microsphere seeds by free radical polymerization. In the third step, the core–shell microspheres with poly‐ (acrylamide)/poly(acrylic acid) based interpenetrating polymer network (IPN) shells were finished by a method of sequential IPN synthesis. The proposed monodisperse core–shell microspheres provide a new mode of the phase transition behavior for thermo‐sensitive “smart” or “intelligent” monodisperse micro‐actuators that is highly attractive for targeting drug delivery systems, chemical separations, sensors, and so on.  相似文献   
104.
Np‐Bromophenylmaleimide (BrPMI) does not polymerize in solution by conventional free radical mechanism. However, it readily polymerized in bulk when mixed with a free radical initiator and heated in a microwave oven for 7–8 min. Copolymerization of ethyl methacrylate or butyl methacrylate with BrPMI was conducted in dioxane. The copolymers were characterized by IR and 1H NMR spectroscopy and gel permeation chromatography. The monomer reactivity ratios were calculated by a non‐linear least‐square analysis. Thermal analysis indicated a great improvement in thermal stability of the copolymers compared with the methacrylate homopolymers. BrPMI was also polymerized in bulk in the DSC pan, which allowed the calculation of the activation energy of its polymerization. Copyright © 2003 Society of Chemical Industry  相似文献   
105.
106.
Due to clearly distinguishable damage symptoms, it is differentiated between the surface and sub‐surface failure mode of rolling bearings. Material states red out by X‐ray diffraction (XRD) residual stress measurements point to a variety of loading conditions especially at raceway surfaces that are associated with several competing failure mechanisms. The corresponding lifetime reduction can range from the lower fatigue strength region to material ratcheting in extreme cases. Relevant position of the microstructural changes and nature of the failure mechanisms are characterized. The time alteration of the XRD material parameters measured at or near the surface and at the depth of the maximum equivalent stress correlates, in a different manner, with the statistical parameter of the 10 % bearing life. Both failure modes are illustrated by concrete examples. Contaminated lubricant and boundary lubrication, which represent practically important surface‐induced failures, are discussed in more detail. Gray staining, i.e. shallow pitting, often occurs without distinct indication of global material aging by means of XRD characteristics. Here, scanning electron microscopy observations and electron microprobe analyses point to corrosion fatigue as acting surface failure mechanism. The interaction between material and lubricant under complex loading regimes particularly of mixed friction and corrosion opens further failure research areas in the field of tribology.  相似文献   
107.
108.
109.
Polyelectrolyte complex based on chitosan and acrylic acid monomer by photoinitiated free‐radical polymerization in the absence of crosslinker showed a large transition in swelling in response to changes in pH of surrounding medium. Their ability to swell arises from polyelectrolyte interactions and molecular structure of the complex. The main properties of interest that related to the molecular structure, swelling volumes, glass transition temperature, and elastic modulus of the complex were investigated. The effect of water content, the only variable in the sample component, played an important role in molecular structure of the complex and as a consequence, the extent of intermolecular linkage, especially amide bonds which in turn governed the degree of swelling of the polyelectrolyte complex in this study. The decreased degree of swelling and higher temperature shift of glass transition temperature was found with increased water content, whereas increased modulus of elasticity of dry complex was found in lower water content of synthesis component. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1025–1035, 2002  相似文献   
110.
N‐(4‐Acetoxyphenyl) maleimide (APMI) and three kinds of comonomers bearing a trimethylsilyl group were copolymerized at 60°C in the presence of azobisisobutyronitrile (AIBN) as an initiator in 1,4‐dioxane to obtain the three IP, IIP, and IIIP copolymers. These copolymers were removed from the acetoxy group in a transesterification process into new IVP, VP, and VIP copolymers with a pendant hydroxyl group. Two modified processes were adopted to prepare photoresists using these copolymers. The first process involved mixing the dissolution inhibitor, o‐nitrobenzyl cholate, with the new copolymers. Second, o‐nitrobenzyl cholate was introduced into the copolymers using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in dimethylformamide (DMF). The cyclic maleimide structure is responsible for the high thermal stability of these copolymers. After irradiation using deep–UV light and development with aqueous Na2CO3 (0.01 wt %), the developed patterns showed positive images and exhibited good adhesion to the silicon wafer without using any adhesion promoter. The resolution of these resists was at least 0.8 μm and an oxygen‐plasma etching rate was 1/5.3 to that of hard‐baked HPR‐204. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2791–2798, 2002; DOI 10.1002/app.10255  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号