首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18195篇
  免费   85篇
  国内免费   223篇
电工技术   201篇
综合类   124篇
化学工业   3449篇
金属工艺   1740篇
机械仪表   824篇
建筑科学   562篇
矿业工程   237篇
能源动力   1974篇
轻工业   659篇
水利工程   53篇
石油天然气   194篇
武器工业   24篇
无线电   1133篇
一般工业技术   3940篇
冶金工业   928篇
原子能技术   255篇
自动化技术   2206篇
  2024年   108篇
  2023年   1139篇
  2022年   642篇
  2021年   987篇
  2020年   1057篇
  2019年   953篇
  2018年   897篇
  2017年   879篇
  2016年   978篇
  2015年   987篇
  2014年   1434篇
  2013年   2949篇
  2012年   699篇
  2011年   656篇
  2010年   523篇
  2009年   511篇
  2008年   429篇
  2007年   364篇
  2006年   306篇
  2005年   260篇
  2004年   225篇
  2003年   239篇
  2002年   151篇
  2001年   177篇
  2000年   136篇
  1999年   149篇
  1998年   123篇
  1997年   82篇
  1996年   115篇
  1995年   75篇
  1994年   59篇
  1993年   48篇
  1992年   27篇
  1991年   24篇
  1990年   20篇
  1989年   21篇
  1988年   10篇
  1987年   8篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
Hierarchical composites represent a class of efficient electrocatalysts for renewable energy storage and conversion technologies owing to the porous structure and additional exposure of metal sites. Herein, a Ni-based metal organic frameworks (MOFs) (marked as Ni-BDC, BDC stands for 1,4-benzenedicarboxylic acid) nanosheet is successfully fabricated on hydroxyl iron oxide (FeOOH) array with carbon fiber cloth (CFC) as substrate. Benefit from the coordination tuning synergistic effect of the distinct chemical composition and the hierarchical structure for fast mass transportation, the as-obtained FeOOH@Ni-BDC illustrates excellent catalytic ability for electrochemical water oxidation with low overpotential of 270 mV to reach 10 mA/cm2 current and good durability in alkaline electrolyte. The novelty of this work lies in the modulation of electronic structure of the FeOOH with Ni-BDC through coordination effect to enhance the activity of the hierarchical composite electrocatalyst. This work is expected to guide the preparation of efficient electrocatalyst for new type alternative energy sources exploitation in near future.  相似文献   
72.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   
73.
Using a comprehensive set of drop weight impact test data (h50) newly compiled from literature for 308 materials, a recent approach to predict impact sensitivities of nitro compounds is generalized to most explosive substances of interest. Compared to previous ones, this procedure is more thoroughly validated and exhibits a good predictive value. Furthermore, it yields new insight into the physical mechanisms involved, explaining for instance the unexpected desensitization of some oxygen-deficient triazoles upon nitration.  相似文献   
74.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
75.
Facile yet efficient synthesis of high-performance nanocatalysts for hydrogen evolution from ammonia-borane (AB) hydrolysis is paramount. Here, we reported a novel hybrid nanocatalyst comprised of Rh nanoclusters (1.56 nm in diameters) anchored on nitrogen (N)-doped carbon nanotubes with embedded Ni nanoparticles (Ni@NCNTs), which was fabricated through adsorption of Rh ions on Ni@NCNTs. The achieved hybrid of Rh/Ni@NCNTs displayed excellent catalytic property (Turnover frequency: 959 min−1) toward AB hydrolysis, higher than many prior developed Rh-based catalysts. Note that this hybrid could be reused for at least nine runs with complete AB conversion to hydrogen. Rh nanoclusters with small size exhibiting high atom utilization and the synergetic effect between Ni and Rh are responsible for the excellent catalytic property of Rh/Ni@NCNTs toward AB hydrolysis. This work highlights the importance of utilization of magnetically recyclable Ni@NCNTs as support and synergetic component for efficient hydrolysis of AB.  相似文献   
76.
This paper investigates the N-policy M/M/1 queueing system with working vacation and server breakdowns. As soon as the system becomes empty, the server begins a working vacation. The server works at a lower service rate rather than completely stopping service during a vacation period. The server may break down with different breakdown rates during the idle, working vacation, and normal busy periods. It is assumed that service times, vacation times, and repair times are all exponentially distributed. We analyze this queueing model as a quasi-birth–death process. Furthermore, the equilibrium condition of the system is derived for the steady state. Using the matrix-geometric method, we find the matrix-form expressions for the stationary probability distribution of the number of customers in the system and system performance measures. The expected cost function per unit time is constructed to determine the optimal values of the system decision variables, including the threshold N and mean service rates. We employ the particle swarm optimization algorithm to solve the optimization problem. Finally, numerical results are provided, and an application example is given to demonstrate the applicability of the queueing model.  相似文献   
77.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
78.
Sr3Fe2O7-δ (SFO) with two-layer Ruddlesden-Popper (R–P) structure has recently been proved to be a promising material for the single phase cathode in proton conducting solid oxide fuel cells (P–SOFCs). To investigate the hydration reactions and proton conducting mechanisms of SFO and cobalt doped SFO (SFCO), both bulk and surface properties were calculated. We conclude that R–P structures have advantages in P–SOFCs. The unique Sr–O–M layer can facilitate the hydration process. Although in Sr–O–F and Sr–O–N layers, it is difficult for the formation and migration of oxygen vacancies, protons are most stable. Furthermore, cobalt doping can not only improve the electronic conductivity but also enhance surface properties of SFCO. The easily exposed Co–Fe–O surface can also facilitate the hydration reactions on the surface. Our work could give an informative insight into the relationships among the doped elements, the R–P structures, the hydration process and the proton conducting properties.  相似文献   
79.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
80.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号