首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2001篇
  免费   131篇
  国内免费   107篇
电工技术   27篇
综合类   95篇
化学工业   1199篇
金属工艺   183篇
机械仪表   38篇
建筑科学   38篇
矿业工程   21篇
能源动力   1篇
轻工业   16篇
水利工程   5篇
石油天然气   30篇
武器工业   14篇
无线电   16篇
一般工业技术   463篇
冶金工业   87篇
原子能技术   6篇
  2024年   7篇
  2023年   33篇
  2022年   42篇
  2021年   54篇
  2020年   39篇
  2019年   31篇
  2018年   39篇
  2017年   44篇
  2016年   56篇
  2015年   49篇
  2014年   53篇
  2013年   68篇
  2012年   101篇
  2011年   125篇
  2010年   78篇
  2009年   99篇
  2008年   86篇
  2007年   119篇
  2006年   129篇
  2005年   136篇
  2004年   96篇
  2003年   116篇
  2002年   97篇
  2001年   87篇
  2000年   78篇
  1999年   55篇
  1998年   69篇
  1997年   39篇
  1996年   43篇
  1995年   33篇
  1994年   25篇
  1993年   22篇
  1992年   27篇
  1991年   22篇
  1990年   19篇
  1989年   6篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1951年   1篇
排序方式: 共有2239条查询结果,搜索用时 0 毫秒
71.
耐候性PP的研制   总被引:7,自引:0,他引:7  
以聚烯烃弹性体(POE)为增韧材料、DICPK为结晶成核剂、BsSO4为无机填充剂,研制了耐候改性PP专用料。结果表明,当POE用量为5份、DICPK用量为0.3份、BaSO4用量为30份时,所得专用料能够满足耐候改性PP专用料的性能要求。  相似文献   
72.
纳米碳酸钙粒子增韧增强不饱和树脂的研究   总被引:6,自引:0,他引:6  
报道了纳米级碳酸钙填充不饱和树脂的性能研究,探讨了碳酸钙含量和钛酸酯偶联处理对不饱和树脂性能的影响,用扫描电镜(SEM)观察了试样的断裂口形貌,结果表明,用偶联剂处理的纳米碳酸钙粒子含量在4份左右时对复合材料的综合性能最佳,比未加纳米粒子的和未处理的材料冲击强度分别提高了370%和170%,拉伸强度分别提高了170%和150%,SEM分析说明未处理粒子增韧不饱和树脂的机理是粒子的“钉扎”效应和钝化裂纹,而偶联剂处理的纳米粒子增韧不饱和树脂的机理主要是料子导致基体产生了塑性变形。  相似文献   
73.
通过对压电、结构陶瓷粉末的选择搭配烧结,发现压电相LiTaO3与基体Al2O3在烧结时能稳定共存,分别采用三种烧结路线制备了LiTaO3/Al2O3陶瓷复合材料,对其微观组织与力学性能进行了研究,结果表明,LiTaO3晶粒中的电畴结构清晰可见,采用适当的烧结路线制备的含有适量压电陶瓷颗粒陶瓷基复合材料的力学性能显著改善,电畴运动引起的能量耗散是一种新的结构陶瓷增韧机制。  相似文献   
74.
EPDM动态硫化增韧PP的力学性能研究   总被引:6,自引:0,他引:6  
讨论了硫化体系、硫化温度、硫化时间对PP/EPDM共混体系力学性能的影响,实验结果表明,采用DCP/BI作为硫化体系可使共混物的力学性能提高,达到增韧的效果,在硫化温度175-180℃、硫化时间14min左右的情况下,增韧效果较好。  相似文献   
75.
高刚性耐候超韧尼龙的研究   总被引:1,自引:0,他引:1  
在尼龙6基料中,加入尼龙66、复合相容剂(聚乙烯弹性体/PE-g-MAH),复合增韧剂等,经双螺杆共混挤出,制得高刚性超韧尼龙/聚乙烯/弹性体合金。探讨了复合相容剂的制备条件及其用量、原材料相对粘度、增韧剂等的选用及加入量对合金性能的影响。结果表明,以聚乙烯弹性体和聚乙烯的混合料为载体树脂,在过氧化物含量为0.08%~0.15%,马来酸酐含量为1%~2%时,制得的复合相容剂对合金的增容效果好;相容剂用量为20%时,合金的综合性能较好;简述了产品的应用范围。  相似文献   
76.
PFPA1212/SEBS-g-MAH共混合金力学性能和微观结构的研究   总被引:5,自引:0,他引:5  
制备了石油发酵尼龙1212/SEBS-g-MAH共混合,工对其力学性能和微观结构进行了研究。结果表明,随着增韧剂含量的增加,共混合金的制品冲击强度显著提高,当增韧剂含量为25%时,缺口冲击强度为61.26kJ/m^2,是纯尼龙1212的15倍,拉伸强度保持率是纯尼龙1212的90%。微观结构研究表明,尼龙1212的断裂属于韧性断裂,增韧后的尼龙1212制品冲击断面有明显的应力发白现象,冲击强度提高的主要原因在于应力集中点的增多。  相似文献   
77.
研究了马来酸酐接枝聚乙烯(PE-g-MAH),核-壳共聚物(甲基丙烯酸甲酯/丁二烯/苯乙烯)共聚物(MBS)和(甲基丙烯酸甲酯/甲基丙烯酸丁酯)共聚物(ACR)对光盘级聚碳酸酯(PC)的增韧作用。结果表明,MBS,ACR能很好地分散在PC中,对PC的增韧效果显著。对PC合金损伤机理的研究表明,核-壳共聚物增韧PC的增韧机理为共聚的粒子的空洞化引发基体的剪切屈服。  相似文献   
78.
采用最新的相容化技术和掺混技术,在尼龙6(PA6)和聚苯醚(PPO)树脂中,加入自制的相容剂,复合增韧剂等,经双螺杆挤出机共混制备出PA6/PPO含量。讨论了相容剂种类及用量,PPO用量,增韧剂的种类对PA6/PPO合金性能的影响。结果表明,当PPO用量为45%,相容剂用量为5%,复合增韧剂用量为10%时,合金的综合性能较好,合金的缺口冲击强度为33.4kJ/m^2,拉伸强度为48.7MPa,弯曲强度为72.0MPa弯曲弹性模量为1750MPa,介绍了PA6/PPO合金的用途。  相似文献   
79.
我国聚丙烯增韧改性研究进展   总被引:3,自引:0,他引:3  
综述了目前广泛采用的聚丙烯增韧改性方法,包括共聚,接枝,交联,茂金属作聚合催化剂与共混改性,无机刚性粒子改性,成核改性等。介绍了几种增韧方法的增韧机理,并比较各方法优缺点。提出茂金属聚丙烯,纳米无机粒子增韧和β晶型成核剂改性是今后聚丙烯增韧改性的发展重点。  相似文献   
80.
High-performance ceramics with low thermal conductivity, high mechanical properties, and idea thermal expansion coefficients have important applications in fields such as turbine blades and automotive engines. Currently, the thermal conductivity of ceramics has been significantly reduced by local doping/substitution or further high-entropy reconfiguration of the composition, but the mechanical properties, especially the fracture toughness, are insufficient and still need to be improved. In this work, based on the high-entropy titanate pyrochlore, TiO2 was introduced for composite toughening and the high-entropy (Ho0.2Y0.2Dy0.2Gd0.2Eu0.2)2Ti2O7-xTiO2 (x = 0, 0.2, 0.4, 1.0 and 2.0) composites with high hardness (16.17 GPa), Young's modulus (289.3 GPa) and fracture toughness (3.612 MPa·m0.5), low thermal conductivity (1.22 W·m−1·K−1), and thermal expansion coefficients close to the substrate material (9.5 ×10−6/K) were successfully prepared by the solidification method. The fracture toughness of the composite toughened sample is 2.25 times higher than that before toughening, which exceeds most of the current low-thermal conductivity ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号