首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   2篇
电工技术   2篇
综合类   2篇
化学工业   25篇
金属工艺   7篇
机械仪表   5篇
建筑科学   4篇
矿业工程   2篇
能源动力   3篇
武器工业   1篇
无线电   2篇
一般工业技术   7篇
原子能技术   2篇
自动化技术   11篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   13篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有73条查询结果,搜索用时 12 毫秒
11.
A simple solid state technique for electrochemical micromachining of metal substrates using a metal ion conductor (Na-β″-Al2O3) was proposed. The fundamental solid electrochemical cell consists of a (anode) metal substrate (M = Ag, Cu, Zn, and Pb)/pyramidal Na-β″-Al2O3/Ag (cathode) system, where the contact diameter between M/Na-β″-Al2O3 was extremely small, on the order of a few micrometer. Under an applied electric field, the metal substrate was electrochemically oxidized to metal ions (Mn+) at the M/Na-β″-Al2O3 microcontact. These Mn+ ions migrated into the Na-β″-Al2O3. As a result of continuous electrolysis, the metal substrate was locally consumed at the microcontact, and thus solid state electrochemical micromachining was accomplished. As expected, the machining size or depth depended on the electrolysis conditions (current, operating time) and the apex configuration of pyramidal Na-β″-Al2O3. Moreover, the scanning of the Na-β″-Al2O3 pyramid during electrolysis produced a fine patterned metal substrate. In the present paper, solid state electrochemical micromachining was performed for several metal substrates, and its advantages and disadvantages vis-a-vis the conventional electrochemical micromachining method are discussed in detail.  相似文献   
12.
Microelectrodes have become well-established tools in a wide range of analytical studies and applications because they exhibit many cardinal advantages bestowed by their micrometer-sized dimensions over conventional large-surface-area electrodes. Nanostructures display quite unique properties different greatly from those of the bulk materials and are widely used in the field of electroanalysis. Nanotextured microelectrodes (NTMEs) are expected to combine attributes of nanostructures with microelectrodes. In this paper, electrodeposition technique, in combination with well-established microfabrication techniques, is used for the first time to the controllable fabrication of novel Pd, Pt, and Au NTMEs. The use of such NTMEs as a novel platform for ultrasensitive nucleic acid detection is also demonstrated.  相似文献   
13.
The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H2, pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H2 concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H2 under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U LIII-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.  相似文献   
14.
In this paper, physiochemical properties of amorphous alumina thin films, grown by the metal organic chemical vapour deposition process on the surface of platinum (Pt/Al2O3) and stainless steel (SS/Al2O3), were investigated in aqueous media. The study was performed by the use of scanning electrochemical microscopy (SECM), which allowed obtaining information on uniformity, topography and chemical stability/reactivity of the alumina coatings with high spatial resolution. In particular, the effects due to local acid, base and fluoride ions attack on alumina layers of thickness of about 250 nm (in the Pt/Al2O3 sample) and 1000 nm (in the SS/Al2O3 sample) were investigated. In the acid and base attack, high concentrations of H2SO4 and KOH were electrogenerated locally by the use of a 25 μm diameter platinum microelectrode. The latter was also used as SECM tip to monitor the chemical effect on the alumina layers. It was found that, regardless of the thickness of the film, alumina provided good resistance against local attack of concentrated H2SO4; instead, the film dissolved when subjected to KOH attack. The dissolution rate depended on several experimental parameters, such as SECM-tip to substrate distance, electrolysis time and alumina film thickness. The alumina layer proved also relatively poor resistance to etching in 0.1 M NaF solutions.  相似文献   
15.
This paper presents an electrochemical microsensor for simultaneous detection of copper (II) and lead (II) using an l-aspartic acid/l-cysteine/gold nanoparticle modified microelectrode. The microelectrode was fabricated by Micro Electro-Mechanical System technique. The complex of gold nanoparticles (AuNPs) and amino acid with carboxyl group was used as the selective ligand for metal ions. The microelectrode was firstly modified with AuNPs to increase the sensitive area of the working electrode. Subsequently, the AuNPs/gold electrode was modified with l-cysteine and then covalently linked with a monolayer of l-aspartic acid using glutaraldehyde. Electrochemical analysis of metal ions was achieved by using square wave voltammetry without stirring. The microsensor exhibited an excellent linear range from 5 μg L− 1 to 2000 μg L− 1 with the limit of detection of 1 μg L− 1. This metal ion detection method based on l-aspartic acid/l-cysteine/gold nanoparticle modified microelectrode is simple, sensitive and it could be used for electrochemical analysis of copper (II) and lead (II).  相似文献   
16.
A microfabricated high-throughput cell electrofusion chip with 1,368 pairs of high aspect ratio silicon microelectrodes is presented. These microelectrodes, which were distributed in six individual microscale cell-fusion chambers, were covered with titanium and gold thin film to improve their electric conductivity as well as surface hydrophobility. Six chambers having different electrode distances make the chip highly suitable for fusing cells with different sizes. A microfluidic platform was set up for flowing control, cell manipulation and also experimental observation. Cells for electrofusion were first aligned at the prearranged locations by the dielectrophoretic force between two counter-electrodes, which benefits the traverse of electric pulse through the cell–cell contacting point for electroporation. Several on-chip cell electrofusion experiments have been carried out on different kinds of animal cells and plant protoplasts. Compared with conventional electrofusion methods, higher fusion efficiency was achieved on this device for precisely forming micropores on the proximate membranes of two contacting cells, and high throughput was also obtained due to the use of a large number of microelectrodes for cell manipulation and fusion. Moreover, a much lower power supply was required for the shorter distance between two counter-electrodes.  相似文献   
17.
A miniaturized glucose biosensor based on the coimmobilization of Fc+ (ferrocene perchlorate)/GOD (glucose oxidase) in nafion film at the surface of a microdisk platinum electrode was fabricated and successfully used for the amperometric determination of glucose. The influences of various experimental conditions, including the relative amounts of glucose oxidase in diluted nafion aqueous solution, the concentration of ferrocene perchlorate and oxygen etc., were investigated in this paper. Ferrocene perchlorate as a redox mediator could catalyze the oxidation of the generated H2O2 based on the enzymatic reaction of glucose in the presence of glucose oxidase and oxygen at a favorable lower working potential (ca. 0.25 V vs. SCE). Moreover, it could also oxidize the reduced flavin adenine dinucleotide (FADH2) of glucose oxidase directly in anaerobic environment. The response time and the detection limit under an optimal parameters were 2 min and 1 × 10−5 M, respectively. The interferences of ascorbic acid and uric acid could be obviously reduced because of the ion-selective characteristics of nation film and a favorable lower working potential. From the Michealis-Menten analysis, the apparent Michaelis constants for glucose and the maximum limiting currents determined were 10.7 mM and 5.1 nA for the incorporation of Fc+ in 1.00 mM Fc+ solution, 7.06 mM and 5.85 nA in 2.00 mM Fc+, respectively. Moreover, using water instead of organic solvents for nafion dilution made this enzyme electrode exhibit a good stability and reproducibility for a long-term use.  相似文献   
18.
An affinity assay was developed that is based on the modulation of the diffusion coefficient of an electroactive label upon complementary recognition leading to an increase of the molecular weight. Using an electroanalytical technique, which is correlated to the diffusion coefficient of the redox species, e.g., cyclic voltammetry, the decrease of the diffusion coefficient can be monitored as a decrease of the diffusion-limited current. Signal amplification was achieved by redox recycling using a microelectrode that is positioned in close distance to a conducting surface. The amplification rate can be adapted by varying the distance between the microelectrode and the conducting surface. As a model system for molecular recognition, the biotin–streptavidin system has been chosen using a ferrocene-labeled biotin derivative as electroactive species. The generality of the approach was proved by extension of the basic assay to related sandwich assays and by miniaturization using a wall-free droplet cell.  相似文献   
19.
基于介电泳的电极阵列电场仿真研究   总被引:1,自引:0,他引:1  
介电泳方法被广泛地应用于微纳颗粒的分离和操纵中,实现介电泳操作的关键是设计满足所需电场分布的电极阵列.针对目前在微电极阵列设计中尚缺乏简单有效的电场解析方法的现状,提出一种基于格林公式的电极阵列电场的解析方法.首先介绍了传统介电泳和行波介电泳的概念和计算模型,分析了介电泳过程与电极上所施加的交变电压的频率和幅度的关系,然后在确立电极电势的边界条件的基础上,采用基于格林公式的电场解析方法,建立了非均匀电场的解析模型,得出不同条件下的电极阵列电场分布的仿真结果,最后利用FEMLAB有限元仿真软件对解析模型进行了对比仿真, 验证了该解析模型的可行性.基于格林公式的电场解析求解方法能够有效地提高电极阵列设计中的针对性以及缩短电极设计的时间.  相似文献   
20.
基于单脉冲放电的钨微细电极快速成形方法及其应用研究   总被引:4,自引:1,他引:3  
在传统电火花加工的基础上,通过单脉冲放电方式,在钨细线电极的端部瞬时成形出一个微米级的微细电极。运用试验研究详尽分析了各主要加工参数,如电极材料、加工极性、工作液介质、放电持续时间和峰值电流等对微细电极的成形影响,得出了微细电极瞬时成形的基本规律。此外,在试验的基础上对微细电极成形的机理进行了初步探讨,并对成形后的电极进行了能谱分析。通过本方法可以在直径0.125 mm的钨丝端部瞬间得到长350 μm,直径30 μm左右的微细电极,用该电极成功地完成了多个微米级微细孔的加工。微细电极的尖端半径约为100 nm,可作为扫描仪器和检测仪器的微细探针。极大地提高了微细电极或探针的成形效率,有望成为微细电极和微细探针制备的有力手段之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号