首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19504篇
  免费   1662篇
  国内免费   1160篇
电工技术   409篇
综合类   1105篇
化学工业   3970篇
金属工艺   1044篇
机械仪表   822篇
建筑科学   898篇
矿业工程   857篇
能源动力   815篇
轻工业   842篇
水利工程   299篇
石油天然气   4401篇
武器工业   205篇
无线电   752篇
一般工业技术   1637篇
冶金工业   650篇
原子能技术   212篇
自动化技术   3408篇
  2024年   50篇
  2023年   244篇
  2022年   473篇
  2021年   546篇
  2020年   587篇
  2019年   502篇
  2018年   485篇
  2017年   607篇
  2016年   639篇
  2015年   698篇
  2014年   1024篇
  2013年   1441篇
  2012年   1240篇
  2011年   1605篇
  2010年   1116篇
  2009年   1269篇
  2008年   1147篇
  2007年   1156篇
  2006年   1179篇
  2005年   982篇
  2004年   770篇
  2003年   725篇
  2002年   638篇
  2001年   537篇
  2000年   430篇
  1999年   402篇
  1998年   342篇
  1997年   276篇
  1996年   238篇
  1995年   204篇
  1994年   155篇
  1993年   99篇
  1992年   75篇
  1991年   87篇
  1990年   85篇
  1989年   61篇
  1988年   31篇
  1987年   29篇
  1986年   29篇
  1985年   20篇
  1984年   23篇
  1983年   11篇
  1982年   14篇
  1981年   6篇
  1980年   8篇
  1977年   3篇
  1964年   5篇
  1957年   3篇
  1956年   3篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 953 毫秒
1.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
2.
3.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
4.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
5.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
6.
7.
In this paper, a modified particle swarm optimization (PSO) algorithm is developed for solving multimodal function optimization problems. The difference between the proposed method and the general PSO is to split up the original single population into several subpopulations according to the order of particles. The best particle within each subpopulation is recorded and then applied into the velocity updating formula to replace the original global best particle in the whole population. To update all particles in each subpopulation, the modified velocity formula is utilized. Based on the idea of multiple subpopulations, for the multimodal function optimization the several optima including the global and local solutions may probably be found by these best particles separately. To show the efficiency of the proposed method, two kinds of function optimizations are provided, including a single modal function optimization and a complex multimodal function optimization. Simulation results will demonstrate the convergence behavior of particles by the number of iterations, and the global and local system solutions are solved by these best particles of subpopulations.  相似文献   
8.
The proposed work involves the multiobjective PSO based adaption of optimal neural network topology for the classification of multispectral satellite images. It is per pixel supervised classification using spectral bands (original feature space). This paper also presents a thorough experimental analysis to investigate the behavior of neural network classifier for given problem. Based on 1050 number of experiments, we conclude that following two critical issues needs to be addressed: (1) selection of most discriminative spectral bands and (2) determination of optimal number of nodes in hidden layer. We propose new methodology based on multiobjective particle swarm optimization (MOPSO) technique to determine discriminative spectral bands and the number of hidden layer node simultaneously. The accuracy with neural network structure thus obtained is compared with that of traditional classifiers like MLC and Euclidean classifier. The performance of proposed classifier is evaluated quantitatively using Xie-Beni and β indexes. The result shows the superiority of the proposed method to the conventional one.  相似文献   
9.
Combination of X-ray Digital Industrial Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques for local liquid velocity measurement (VLL) has been newly developed and successfully applied for trickle bed reactor (TBR). The technique was validated against newly developed fiber optical probe technique. This work attempts to highlight the applicability of this newly developed technique on a liquid–solid packed bed reactor. In this work, liquid was represented by water and solids were represented by EPS beads. The EPS beads were chosen because of its low density property. Three superficial liquid velocities (VSL) were applied to the system. The experiment was replicated four times. The digital industrial radiography (DIR) consists of a complementary metal oxide semiconductor (CMOS) digital detector and X-ray source. Results of this work suggest that the technique has been successfully applied and comparable with previous work that has been done in the literature. It also suggests that there will be a maximum measurable interstitial liquid velocity when it travel inside the packed bed. The measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. For VSL=0.42±±2%, the VLL-Max is in between 1.7 cm/s and 1.9 cm/s, VSL=0.84±±2%, the VLL-Max is in between 3.6 cm/s and 4.0 cm/s, and for VSL=1.11±±2%, the VLL-Max is in between 4.3 cm/s and 4.8 cm/s.  相似文献   
10.
The process of electrodeposition can be described in terms of a reaction-diffusion partial differential equation (PDE) system that models the dynamics of the morphology profile and the chemical composition. Here we fit such a model to the different patterns present in a range of electrodeposited and electrochemically modified alloys using PDE constrained optimization. Experiments with simulated data show how the parameter space of the model can be divided into zones corresponding to the different physical patterns by examining the structure of an appropriate cost function. We then use real data to demonstrate how numerical optimization of the cost function can allow the model to fit the rich variety of patterns arising in experiments. The computational technique developed provides a potential tool for tuning experimental parameters to produce desired patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号