全文获取类型
收费全文 | 13801篇 |
免费 | 465篇 |
国内免费 | 276篇 |
专业分类
电工技术 | 79篇 |
技术理论 | 1篇 |
综合类 | 356篇 |
化学工业 | 9151篇 |
金属工艺 | 141篇 |
机械仪表 | 86篇 |
建筑科学 | 99篇 |
矿业工程 | 22篇 |
能源动力 | 404篇 |
轻工业 | 875篇 |
水利工程 | 8篇 |
石油天然气 | 1191篇 |
武器工业 | 11篇 |
无线电 | 284篇 |
一般工业技术 | 1402篇 |
冶金工业 | 47篇 |
原子能技术 | 229篇 |
自动化技术 | 156篇 |
出版年
2024年 | 27篇 |
2023年 | 101篇 |
2022年 | 192篇 |
2021年 | 255篇 |
2020年 | 213篇 |
2019年 | 205篇 |
2018年 | 186篇 |
2017年 | 278篇 |
2016年 | 288篇 |
2015年 | 332篇 |
2014年 | 617篇 |
2013年 | 839篇 |
2012年 | 798篇 |
2011年 | 895篇 |
2010年 | 751篇 |
2009年 | 796篇 |
2008年 | 689篇 |
2007年 | 890篇 |
2006年 | 877篇 |
2005年 | 867篇 |
2004年 | 676篇 |
2003年 | 676篇 |
2002年 | 587篇 |
2001年 | 437篇 |
2000年 | 375篇 |
1999年 | 374篇 |
1998年 | 270篇 |
1997年 | 203篇 |
1996年 | 179篇 |
1995年 | 112篇 |
1994年 | 131篇 |
1993年 | 90篇 |
1992年 | 75篇 |
1991年 | 56篇 |
1990年 | 20篇 |
1989年 | 31篇 |
1988年 | 24篇 |
1987年 | 10篇 |
1986年 | 7篇 |
1985年 | 22篇 |
1984年 | 19篇 |
1983年 | 27篇 |
1982年 | 36篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1959年 | 1篇 |
1951年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
The conductivity of a poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film can be enhanced by more than two orders of magnitude by adding a compound with two or more polar groups, such as ethylene glycol, meso‐erythritol (1,2,3,4‐tetrahydroxybutane), or 2‐nitroenthanol, to an aqueous solution of PEDOT:PSS. The mechanism for this conductivity enhancement is studied, and a new mechanism proposed. Raman spectroscopy indicates an effect of the liquid additive on the chemical structure of the PEDOT chains, which suggests a conformational change of PEDOT chains in the film. Both coil and linear conformations or an expanded‐coil conformation of the PEDOT chains may be present in the untreated PEDOT:PSS film, and the linear or expanded‐coil conformations may become dominant in the treated PEDOT:PSS film. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to an enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as an electrode for polymer optoelectronic devices. Polymer light‐emitting diodes and photovoltaic cells fabricated using such high‐conductivity PEDOT:PSS films as the anode exhibit a high performance, close to that obtained using indium tin oxide as the anode. 相似文献
83.
Multifunctional properties of nanomaterials becomes a hot topic in nano research for the development of multifunctional devices, because modern devices need multifunctional platform for the high efficient plural performance on a single device. Here, we introduce a multifunctional π-conjugated poly (3-methylthiophene) (P3MT) nanotube (NT), showing controllable optical and electrical properties through the control of doping level. P3MT NTs were electrochemically synthesized in the low temperature (−40 °C) on the nanoporous template. The change of doping level by post cyclic voltammetry (CV) treatment on the P3MT lead the variance of polaron/bipolaron band, resulting into the drastic change of ultraviolet-visible absorption and photoluminescence properties. While P3MT NTs before CV treatment show an ohmic behavior in the current-voltage characteristics, those after CV treatment show high photocurrent. From the field emission experiment, the P3MT NTs before CV treatment have a relatively low turn-on electric field and stable electron emission property compared to the P3MT NTs after CV treatment. This shows that the π-conjugated polymers should be shed new light on their multifunctionality for the potential application to the multifunctional platform of opto-electronic nanodevices. 相似文献
84.
85.
This article describes the fabrication of durable metallic patterns that are embedded in poly(dimethylsiloxane) (PDMS) and demonstrates their use in several representative applications. The method involves the transfer and subsequent embedding of micrometer‐scale gold (and other thin‐film material) patterns into PDMS via adhesion chemistries mediated by silane coupling agents. We demonstrate the process as a suitable method for patterning stable functional metallization structures on PDMS, ones with limiting feature sizes less than 5 μm, and their subsequent utilization as structures suitable for use in applications ranging from soft‐lithographic patterning, non‐planar electronics, and microfluidic (lab‐on‐a‐chip, LOC) analytical systems. We demonstrate specifically that metal patterns embedded in both planar and spherically curved PDMS substrates can be used as compliant contact photomasks for conventional photolithographic processes. The non‐planar photomask fabricated with this technique has the same surface shape as the substrate, and thus facilitates the registration of structures in multilevel devices. This quality was specifically tested in a model demonstration in which an array of one hundred metal oxide semiconductor field‐effect transistor (MOSFET) devices was fabricated on a spherically curved Si single‐crystalline lens. The most significant opportunities for the processes reported here, however, appear to reside in applications in analytical chemistry that exploit devices fabricated using the methods of soft lithography. Toward this end, we demonstrate durably bonded metal patterns on PDMS that are appropriate for use in microfluidic, microanalytical, and microelectromechanical systems. We describe a multilayer metal‐electrode fabrication scheme (multilaminate metal–insulator–metal (MIM) structures that substantially enhance performance and stability) and use it to enable the construction of PDMS LOC devices using electrochemical detection. A polymer‐based microelectrochemical analytical system, one incorporating an electrode array for cyclic voltammetry and a microfluidic system for the electrophoretic separation of dopamine and catechol with amperometric detection, is demonstrated. 相似文献
86.
Tristable switching nonvolatile memory (NVM) devices based on graphene quantum dots (GQDs) sandwiched between multi-stacked poly (methyl methacrylate) (PMMA) layers were fabricated on indium-tin-oxide (ITO)-coated glass substrates by using a solution-processed method. Current-voltage (I-V) curves at 300 K for the silver nanowire/PMMA/GQD/PMMA/GQD/PMMA/ITO/glass devices showed tristable switching currents with high-resistance, intermediate-resistance, and low-resistance states. The device's cycling endurance of the three resistance states remained stable with a distinguishable value for each resistance state over 1000 cycles, and the obtained retention results showed well-distinguished resistance states without degradation for up to 1 × 104 s. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current, and ohmic conduction were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I-V characteristics. The described energy-band diagrams confirm the proposed conduction band mechanisms. 相似文献
87.
88.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,在125℃的低温条件下,沉积了一系列不同厚度的本征微晶硅(μc-Si)薄膜。对材料的光电特性和结构特性的测试结果表明,低温条件下制备的μc-Si薄膜具有较厚的非晶孵化层,并且纵向结构演变较为明显。采用梯度H稀释技术,在沉积过程中不断降低H稀释度,改善了μc-Si薄膜的纵向均匀性。将此技术应用于非晶硅(a-Si)/μc-Si叠层电池的μc-Si底电池,在聚对苯二甲酸乙二醇酯(PET)塑料衬底上制备出初始效率达到6.0%的a-Si/μc-Si叠层电池。 相似文献
89.
Piezoelectric materials have attracted substantial interest in applications such as sensors and actuators. Ferroelectric and piezoelectric polymeric fibers doped with nanoparticles are made for use in nanoscale electronic devices. In this paper, we report on poly (vinylidene fluoride) (PVDF) nanocomposites doped with different ratios of multi-walled carbon nanotube (MWCNT) and Cloisite 30B (OMMT) nanoclay prepared by electrospinning technique. The effect of different ratios of OMMT and MWCNT nanofillers and potential synergistic effect of these fillers on the crystalline structure of PVDF and the performance of resulting piezo-device were studied. Results showed that OMMT increases beta phase crystals and piezoelectric properties of PVDF as compared with MWCNT. Meanwhile, MWCNT decreases impedance and increases dielectric constant of PVDF as compared with OMMT. The acoustic absorption behavior of PVDF/MWCNT/OMMT hybrid nanocomposite was also investigated. It was found that the sound absorption efficiency of PVDF/MWCNT/OMMT hybrid nanocomposites was increased compared with that of pure PVDF fibers and film. No synergistic effect of OMMT and MWCNT on the properties of PVDF was observed. 相似文献
90.