首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
化学工业   89篇
金属工艺   1篇
能源动力   5篇
石油天然气   1篇
无线电   1篇
一般工业技术   3篇
冶金工业   1篇
原子能技术   1篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   11篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   5篇
  2007年   13篇
  2006年   1篇
  2005年   10篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
排序方式: 共有103条查询结果,搜索用时 234 毫秒
71.
Epoxy resin of bisphenol-C (EBC), its ricinoleate- and linoleate-based polyols have been cured using 5–25 wt% triethylamine and toluene-2,4-di-isocyanate at 100° and 140°C, respectively. Cured resins are insoluble in common solvents and characterized by IR, DSC and TGA. Amine-cured resin was thermally stable up to about 309–318°C and followed 1.5-order degradation kinetics. Ricinoleate-based polyurethane was thermally stable up to about 215°C and followed 0.43-, 0.75-, and 1.12-order degradation kinetics. Linoleate-based polyurethane was thermally stable up to about 260°C and followed, respectively, 1.9- and 0.93-order degradation kinetics. Kinetic parameters are interpreted in light of resin structure and nature of hardeners used. Amine-cured epoxy resin possesses better thermal properties than those of its polyols-based polyurethanes.  相似文献   
72.
It was shown that when polyurethanes designed for use in biopolymer applications were immersed in orienting fluids, significant increases in their non-dispersive surface energies took place. The kinetics of the surface energy response were found to be a function of the immersion medium's acid-base interaction potential. Restructuring from the as-cast state, similar to that reported for two-component polyurethane adhesives, occurs in response to thermodynamic demands and is attributable to a preferential concentration of low energy segments in the surface region. Since shifting surface energies in polyurethanes may pose problems in biological applications, an attempt was made to crosslink the surface of the polymers by the use of cold, microwave plasma discharges with Argon as the treatment gas. Plasma treatments proved to be successful, in that polyurethane surfaces so modified responded much more weakly to changes in the polarity of contact media.  相似文献   
73.
Zhong'an Li  Gui Yu  Yunqi Liu  Jingui Qin 《Polymer》2007,48(19):5520-5529
A series of main-chain polyurethanes containing sulfonyl-based NLO chromophores in the polymer backbone were prepared, the subtle structure of the chromophore moieties could be easily modified to adjust the property of the resultant polymers. The polymers exhibit improved stability of their enhanced NLO effects, besides their good processability, thermal stability, and relatively good transparency. The tested NLO properties of the polymers demonstrate that there is a suitable isolation group present for the sulfonyl-based chromophore to boost its microscopic β value to possibly higher macroscopic NLO property efficiently, and BOP moieties are the best choice for this series of polymers to achieve optimized properties.  相似文献   
74.
Simultaneous small angle X-ray scattering (SAXS) and force measurements have been recorded during tensile deformation of two contrasting polyurethane elastomers. The elastomers comprise the same hard and soft chemical segments; in Sample A, the length of the hard blocks is randomised while in Sample B the hard blocks are monodisperse. During deformation of Sample A, the SAXS halo from the mesophase structure deforms to an ellipse with intensification on the meridian. In Sample B, the halo transforms into a four point pattern. The ellipse patterns of A are interpreted in terms of a model based on particles located on a statistical lattice which is subjected to an affine deformation scheme. According to this model, the SAXS patterns of A are consistent with the hard phase regions behaving as embedded particles which separate from each other in an affine manner and which are not impeded by interconnections during the mechanical yield process. In B, the interconnection of the hard phase prevents affine deformation of the structure and involves the formation of a four point ‘lattice’ structure which then subsequently deforms in an affine manner. The differences in behaviour are linked with the segment sequencing which result in the phase regions of Sample A having a lower volume fraction and are consistent with variation in applied stress.  相似文献   
75.
The composition of crude algal oil was analyzed and determined by several methods. Oil was converted to polyols by ozonolysis, epoxidation, and hydroformylation. Ozonolysis gave a polyol with lighter color but a low OH number and was unsuitable for polyurethane applications. Epoxidation also improved the color and gave a polyol with an OH number around 150 mg KOH/g, which with diphenylmethane diisocyanate gave a homogeneous, rubbery, transparent sheet. Desirable rigid foams were prepared with the addition of water to the formulation. Hydroformylation was carried out successfully giving an OH number of about 150 mg KOH/g, but the polyol was black. Casting the polyurethane sheet was difficult due to the very high reactivity of the polyol. Polyurethane foam of lower quality than from epoxidation polyol was obtained. More work on optimization of the foaming system would improve the foam. Crude algal oil is a viable starting material for the production of polyols. Better results would be obtained from refined algal oils.  相似文献   
76.
国外水性聚氨酯研究新进展   总被引:21,自引:4,他引:21  
本文系统地介绍了近年来国外关于水性聚氨酯的制备、性能、应用以及改性的研究状况。  相似文献   
77.
Herein, we introduce a simple route to fabricating hydrophilic microfluidic chips with an alternative material, a UV‐cured polyurethane‐related polymer, known as Norland Optical Adhesive (NOA 63). Conventionally, polydimethylsiloxane (PDMS) is widely used to fabricate microfluidic chips as an alternative to glass or SiO2 because PDMS is easily molded and relatively cheap. However, despite these advantages, the hydrophobicity of PDMS entails critical problems when it is used in microfluidic chips because microchannels inside the microfluidic chips, which have extremely low surface tension, are difficult to fill with aqueous solution without an extra pumping system. To overcome these problems, significant efforts have been focused on developing procedures to change the PDMS surface to be hydrophilic. However, the resulting hydrophilicity is generally short‐lived and the modification procedures require cumbersome multi‐steps. In the present study, we demonstrate that microchannel‐molding and microfluidic chip construction are easier using NOA 63 than when using PDMS and that the hydrophilicity of the NOA surface, which is induced by treatment with O2 plasma, lasts longer, for at least one month. Due to the longer lasting hydrophilicity, microchannels in NOA 63 microfluidic chips are spontaneously filled with solution by capillary reaction without any extra pumping over the period. The feasibility of NOA 63‐based microfabrication is verified by demonstrating NOA 63 microfluidic platforms with antibody‐immobilized beads for immunoassays.  相似文献   
78.
Water resistance is a unique advantage of castor oil-based polyurethane, permitting the application of coatings in humid environments. However, its low thermal decomposition temperature remains a limitation. Here, to demonstrate a simple method to improve the thermal stability of cured films, we prepared an organic montmorillonite dispersion utilising 3-(methacryloyloxy)propyltrimethoxysilane and protonated 3-aminopropyltriethoxysilane for modifying the clay. The method was put into practice by directly mixing the dispersion with a UV-curable castor oil-based waterborne polyurethane dispersion. The inclusion of organic molecule chains from the silane coupling agents noticeably improves the compatibility of polyurethane with organic montmorillonite, which imparts the composite latex with better thermal stability and mechanical properties when the organic montmorillonite additive is 5.0?wt-%.  相似文献   
79.
Yan-Jyi Huang  Lih-Der Chen 《Polymer》1998,39(26):7049-7059
The effects of three series of unsaturated polyester (UP) resins with different chemical composition or structure on the mechanical properties of three low-shrink UP resins containing thermoplastic polyurethane, poly(vinyl acetate) and poly(methyl methacrylate) respectively have been investigated by an integrated approach of static phase characteristics–cured sample morphology–reaction conversion–property measurements. The three series of UP resins synthesized include: maleic anhydride (MA)–neopentyl glycol (NPG)–diethylene glycol (DEG) types, with various molar ratios of NPG and DEG; MA–1,2-propylene glycol (PG) types with and without modification by a saturated dibasic aromatic anhydride or acid, such as phthalic anhydride (PA) or isophthalic acid; and MA–PA–PG types modified by a second glycol, such as DEG, 2-methyl-1,3-propanediol or NPG, to partially replace PG. Based on the Takayanagi mechanical models, the effects of glycol ratios, saturated dibasic aromatic acid modification, second glycol modification, C=C unsaturation of UP and molecular weight of UP on the mechanical properties will be discussed.  相似文献   
80.
Rigid polyurethane (PU) foams were prepared using three North American seed oil starting materials. Polyol with terminal primary hydroxyl groups synthesized from canola oil by ozonolysis and hydrogenation based technology, commercially available soybean based polyol and crude castor oil were reacted with aromatic diphenylmethane diisocyanate to prepare the foams. Their physical and thermal properties were studied and compared using dynamic mechanical analysis and thermogravimetric analysis techniques, and their cellular structures were investigated by scanning electron microscope. The chemical diversity of the starting materials allowed the evaluation of the effect of dangling chain on the properties of the foams. The reactivity of soybean oil-derived polyols and of unrefined crude castor oil were found to be lower than that of the canola based polyol as shown by their processing parameters (cream, rising and gel times) and FTIR. Canola-PU foam demonstrated better compressive properties than Soybean-PU foam but less than Castor-PU foam. The differences in performance were found to be related to the differences in the number and position of OH-groups and dangling chains in the starting materials, and to the differences in cellular structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号