首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
化学工业   45篇
建筑科学   2篇
一般工业技术   20篇
原子能技术   1篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
41.
Mactaquac Generating Station was constructed in the mid 1960's and is located in the province of New Brunswick in Eastern Canada. The effect of ASR expansion on the concrete structures of the station were first noticed approximately 10 years after construction and, ASR was conclusively diagnosed in 1986. Since 1985, various remedial measures have been undertaken to mitigate the effects of concrete expansion. Eventually reconstruction of the concrete structures will be necessary and current projections are that replacement should be complete by 2030. Due to the lack of any suitable locally-available non-reactive aggregate, consideration is being given to using the same source of reactive aggregate for reconstruction.This paper describes a research study to determine the optimum strategy for preventing deleterious ASR expansion with this aggregate. The options being evaluated include the use of pozzolans and slag, limiting the alkali content of the concrete, and the use of chemical admixtures. Methods of evaluation include accelerated laboratory tests and field exposure of large blocks.  相似文献   
42.
Time to failure for concrete exposed to severe sulfate attack   总被引:5,自引:0,他引:5  
In the 1940s, the U.S. Bureau of Reclamation (USBR) began a long-term, nonaccelerated laboratory test program to determine the influence of a variety of concrete-mix parameters on resistance to severe sulfate exposure conditions. This paper reports the time of failure of these samples as influenced by their water-to-cement (w/c) ratio, cement composition, and percent replacement of cement with fly ash. The analysis indicates that there is a “safe zone” for concrete made with w/c ratio lower than 0.45 and cement with unhydrated tricalcium aluminate (C3A) content lower than 8% where failure did not occur within the 40-year exposure period. As expected, concrete samples cast with high amount of C3A failed after a relatively short time of sulfate exposure. Expansion tests indicated that cements containing high amounts of C3S may lead to premature failure of concrete, even when moderate w/c ratios are used. Samples prepared with 25% and 45% replacement of cement with fly ash showed significantly less expansion than comparable mixtures containing no pozzolans.  相似文献   
43.
Spent fluid catalytic cracking catalyst (FC3R) from a petrol refinery played a pozzolanic role in portland cement system as revealed by previous experimental data. In the present study, the pozzolanic activity of FC3R was investigated by means thermogravimetry (TG) of cured lime-FC3R pastes. The influence of pozzolan/lime ratio on the pozzolanic activity was investigated. Due to the chemical composition of FC3R is similar to metakaolin (MK), and knowing that MK has a high pozzolanic activity, the latter was used as a material of comparison in this study. The scope of the study is the determination of the pozzolanic activity of FC3R and the evaluation of amount and nature of pozzolanic products. The products obtained from the reaction between FC3R components (SiO2/Al2O3) and calcium hydroxide (CH) have been characterized, finding that the main pozzolanic reaction product was similar to hydrated gehlenite (calcium aluminosilicate hydrate) CSH and CAH were also formed in the reaction. FC3R showed higher pozzolanic reactivity than metakaolin, for low-lime content pastes and early curing age. Thermogravimetry, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) became very useful techniques for evaluation of reactivity.  相似文献   
44.
The effect of three different natural pozzolans from Turkish deposits on the properties of blended cements produced by intergrinding cement clinker with a high volume of natural pozzolan (55 wt.% of the cementitious material) was investigated. The particle size distribution of blended cements, setting time, heat of hydration, and compressive strength of blended cement mortars were determined. Experimental results showed that the hardness of the pozzolanic material strongly influenced the particle size distribution and the related properties of the blended cements by affecting the fineness of the components of the blended product. The early strength of the mortars was strongly affected by the particle size distribution of blended cements, whereas the strength development performance of the mortars was more related to the pozzolanic activity of the natural pozzolan present in the blended cement.  相似文献   
45.
MSWI ashes as mineral additions in concrete   总被引:1,自引:0,他引:1  
The paper describes the results of a research aimed at studying the effect of replacing part of portland cement with fly ash and bottom ash, both from municipal solid waste incinerators (MSWIs). Fly ash was subjected to a washing treatment to reduce the chloride content, while bottom ash was subjected to dry or wet grinding underwater. Concretes with addition of different types of ashes, including a traditional coal fly ash (FA), were manufactured. Fresh and hardened properties of the concretes were compared in order to study the advantages and the side effects of each type of addition. Results showed that MSWI bottom ash is potentially attractive as mineral addition for the production of concrete, provided that the risk of entrapment of hydrogen bubbles produced by corrosion of aluminium metallic particles in the fresh concrete is prevented. This could be achieved by wet grinding the bottom ash so that reactions leading to gas development exhaust within the slurry before this is added to the concrete mixture. However, by considering bottom ashes from different incinerators, a great variability was observed in the time required to complete the hydrogen gas production. Nevertheless, when the hydrogen development in the fresh concrete could be avoided, wet ground MSWI bottom showed a good pozzolanic behavior and proved to give a significant contribution to the development of the strength and impermeability of concrete.  相似文献   
46.
    
One of the most promising strategies to manage the large volume of construction and demolition (C&D) waste is recycling and utilizing it for the production of new concrete. However, recycled concrete aggregate (RCA) derived from C&D waste possesses relatively higher porosity and water absorption capability, which often limits its wild utilization. In this study, pozzolan slurry (includes silica fume, nano-SiO2, and fly ash slurries) and CO2 treatments as enhancement methods for RCA were investigated. Test results showed that CO2 treatment was more effective in reducing water absorption and enhancing fluidity, whereas pozzolan slurry treatment could decrease fluidity. Mortars prepared with treated RCA exhibited better mechanical strength and higher resistance towards carbonation and chloride-ion diffusion than those with untreated RCA. Both pozzolan slurry and CO2 treatments enhanced not only the properties of RCA, but also the old and new interfacial transition zones (ITZs) as demonstrated in the measured micro-hardness and SEM observation.  相似文献   
47.
This research is to study the effect of particle size of fly ash on packing effect and pozzolanic reaction of mortar when 20% of fly ash is used to replace Portland cement type I. Both effects can be determined by using fly ash and insoluble material which have almost the same particle size to replace Portland cement type I. Normally, the compressive strength of fly ash mortar is contributed from hydration reaction, packing effect, and pozzolanic reaction. For mortar mixed with insoluble material, the compressive strength is due to hydration reaction and packing effect. Thus, compressive strength due to pozzolanic reaction can be determined from the difference in compressive strength between fly ash mortar and insoluble material mortar. The results show that the strength activity index of fly ash mortar depends on the median particle size of fly ash and curing ages of mortar samples. At early ages, the strength activity index of fly ash mortar due to packing effect is higher than that due to pozzolanic reaction. At the ages of 3 to 90 days, the difference in strength activity index due to packing effect of fly ashes with median particle size of 2.7 and 160 μm is almost constant about 22% of the strength of standard mortar (STD). The differences in strength activity index due to pozzolanic reaction of fly ashes with median particle size of 2.7 and 160 μm are 3%, 20%, and 27%, respectively, at the ages of 3, 28, and 90 days.  相似文献   
48.
The zeolitic waste material studied (fluidized bed cracking catalyst, FBCC) is characterised by a content of more than 90 wt.% of SiO2 and Al2O3, a mean grain size within 20-80 μm, and a specific surface above 100 m2/g. Its chemical composition makes it similar to some fly ashes and metakaolin. The present work was devoted to the study of the mechanism of interaction of FBCC with Portland cement and of the pozzolanic activity. Concretes were made with FBCC additions of 10% and 20% (relative to the mass of cement) used as a substitute for the sand aggregate fraction, and the following properties of the concretes were determined under nonaggressive conditions: compressive strength, porosity, water absorption, frost resistance, and steel passivation ability. It has been found that FBCC has pozzolanic properties, and its pozzolanic activity depends on its grain size. FBCC favourably modifies the porous structure of the concretes, increases their compressive strength, density, and frost resistance, and reduces water absorption. The effectiveness of FBCC increases under conditions of strong dispersion. FBCC does not deteriorate the steel passivation ability of concrete when used as a 10% additive, but at a content of 20 wt.%, it can make difficult the formation of a passive layer that conforms to the Polish standards.  相似文献   
49.
Importance of using the natural pozzolans on concrete durability   总被引:1,自引:0,他引:1  
《Cement and Concrete Research》2002,32(12):1851-1858
Natural pozzolans have become important because of their role in concrete durability. This situation has provoked an increase in the use of pozzolanic cement in concrete construction. This paper reports results of different portland-pozzolan cements containing different natural pozzolans, and they were compared with ASTM Types I, II and V cements. The pozzolanic activity and composition of each pozzolan were evaluated. The susceptibility to sulfate attack was studied by measuring the expansion in mortar bars at different ages (according to ASTM C 1012 Method) for 78 weeks. It was found that certain cements containing pozzolans with high activity or low alumina content improve resistance to sulfate attack, although the amount of pozzolan in the cement is important.  相似文献   
50.
Diatomite was used as a Pozzolan to augment lime reactivity. This was confirmed through laboratory wet and dry flue gas desulfurization (FGD) experiments using pH-stat apparatus (representing wet FGD) and fixed bed reactors (representing dry FGD). BET surface area analysis and SEM imaging were used in characterization and to aid in understanding the behavior of the sorbent. After affirming that diatomite improves lime's reactivity, optimization tests were conducted to maximize the reactivity output. The effect of various variables namely; temperature, lime to diatomite ratio, solid to liquid ratio and stirring speed, were maximized linearly, quadratically and interactively. The design of optimization experiments was done through design expert software. Central cubic design was used for regression analysis. As expected, temperature had the highest effect towards reactivity. Some effect showed a mini-max behavior while others had a sinusoidal trend.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号