首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  国内免费   1篇
化学工业   5篇
机械仪表   1篇
建筑科学   15篇
能源动力   1篇
水利工程   4篇
原子能技术   2篇
自动化技术   1篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2006年   2篇
  2005年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
用积分-微分方程来描述已完全混合的循环紊流中粒子气载浓度的衰减,考察了再悬浮模型在改进型气冷堆一回路中注入粒子的气载浓度衰减上的应用。模拟了初期沉淀后的再悬浮的方式。  相似文献   
22.
Aerosol particle removal and re-entrainment in turbulent channel flows are studied. The instantaneous fluid velocity field is generated by the direct numerical simulation (DNS) of the Navier - Stokes equation via a pseudospectral method. Particle removal mechanisms in turbulent channel flows are examined and the effects of hydrodynamic forces, torques and the near-wall coherent vorticity are discussed. The particle resuspension rates are evaluated, and the results are compared with the model of Reeks. The particle equation of motion used includes the hydrodynamic, the Brownian, the shearinduced lift and the gravitational forces. An ensemble of 8192 particles is used for particle resuspension and the subsequent trajectory analyses. It is found that large-size particles move away roughly perpendicular to the wall due to the action of the lift force. Small particles, however, follow the upward flows formed by the near-wall eddies in the low-speed streak regions. Thus, turbulent near-wall vortical structures play an important role in small particle resuspension, while the lift is an important factor for reentrainment of large particles. The simulation results suggests that small particles (with τp+ ≤ 0.023) primarily move away from the wall in the low-speed streaks, while larger particles (with τp+ ≥ 780) are mostly removed in the high-speed streaks.  相似文献   
23.
The paper describes an experimental method to create reproducible particle layers. These layers are to be resuspended. The resuspension process itself is monitored coincidentally with an optical method. A theoretical approach to the phenomena uses a balance of forces effecting at a characteristic particle of the layer to estimate a resuspension coefficient. This coefficient describes resuspension in the way mass transfer coefficients describe mass transfer phenomena in fluids.  相似文献   
24.
A back-lighted particle imaging system (BLPIS) is developed to simultaneously measure particle size distribution and volume concentration of suspended particles in water. Based upon optical principles, a modified in-focus parameter, incorporating optical conditions, particle shape, overlapping, and depth-of-field variations due to particle size, is developed to identify particles. BLPIS is calibrated with a precise graticule with an accuracy of particle sizes within the measurement uncertainty of image pixel size resolution. For volume concentration, BLPIS employs an adaptive sampling volume methodology that varies with each particle size based upon a critical in-focus parameter value. Experiments show that under lower volume concentration, measured and actual particle size distributions are in good agreement. For higher volume concentration, measured particle concentration is corrected using a Poisson-based distribution to account for overlapping. Overall the volumetric concentration measurement is reliable and accurate with a relative error of approximate 10%. Finally BLPIS is applied to accurately measure both size and concentration of flowing particles near the bottom boundary with resuspension and sedimentation processes.  相似文献   
25.
People spend approximately one‐third of their lives sleeping, where they can be exposed to a myriad of particle‐bound biological agents and chemical pollutants that originate within mattresses and bedding, including allergens, fungal spores, bacteria, and particle‐phase semi‐volatile organic compounds. Full‐scale particle resuspension experiments were conducted in an environmental chamber, where volunteers performed a prescribed movement routine on an artificially seeded mattress. Human movements in bed, such as rolling from the prone to supine position, were found to resuspend settled particles, leading to elevations in airborne particle concentrations. Resuspension rates were estimated for the size fractions of 1–2 μm, 2–3 μm, 3–5 μm, 5–10 μm, and 10–20 μm, and were in the range of 10?3 to 101 h?1. Particle size had the most significant impact on the resuspension rate, whereas dust loading, volunteer body mass, and ventilation rate had a much smaller impact. Resuspension increased with the intensity of a movement, as characterized by surface vibrations, and decreased with repeated movement routines. Inhalation exposure was characterized with the intake fraction metric. Intake fractions increased as the particle size and ventilation rate decreased and ranged from 102 to 104 inhaled particles per million resuspended, demonstrating that a significant fraction of released particles can be inhaled by sleeping occupants.  相似文献   
26.
This article deals with the resuspension phenomenon whereby particles adhering on a wall surface can be re-entrained by a flowing fluid. This is an area where significant progress has been achieved over the last years from an experimental, theoretical and numerical point of view. A first purpose of the present work is to report on the advances that have clarified our understanding of the physics of particle resuspension. It will be seen that new pictures have emerged about the physical processes involved in particle resuspension and, correspondingly, that new models have been proposed. A second purpose of the review is to put forward a general framework that allows both experimental analysis and new modelling ideas to be developed in terms of the fundamental interactions at play. These interactions are made up by the particle–fluid, particle–surface and particle–particle forces which are, in turn, related to the three specific fields of fluid dynamics, interface chemistry and surface roughness. Such a separation is helpful to highlight the actual physical processes while emphasising their relative importance in different situations and to provide useful guidelines for the necessary modelling efforts. In particular, it is stressed that new models which capture particle motion along a wall and simulate the complete particle dynamics represent an improvement over more classical static approaches. It is proposed that these new approaches be pursued and brought to higher levels of maturity.In this paper, attention is first focussed on the case where only a single layer of particles is sticking on the surface and, thus, can be re-entrained. A detailed review of the experimental works brings out the essential mechanisms and particle resuspension is shown to result from a balance between particle–fluid interactions and particle–surface interactions influenced by surface heterogeneities (roughness). The numerical models which have been proposed are then thoroughly discussed with respect to a new hierarchy of modelling approaches which is introduced. The present paper also outlines the mechanisms of multilayer particle resuspension which is still an open subject and where our present understanding remains preliminary. In this situation, resuspension is shown to be also governed by particle–fluid and particle–surface interactions but with the addition of particle–particle interactions (through cohesion forces or impaction). Finally, suggestions about the areas that still need to be addressed as well as about the issues that remain to be improved are addressed.  相似文献   
27.
A model for removal of compact, rough, irregularly shaped particles from surfaces in turbulent flow was developed. Following the approach of our previous bumpy particle model, irregularly shaped particles were modeled as spherical particles with a number of bumps on them. To improve the model, the effect of surface roughness was added to the bumps. Each bump was modeled with large number of asperities and the Johnson-Kendall-Roberts (JKR) adhesion theory was used to model the adhesion and detachment of each bump and asperity in contact with the surface. The total adhesion force for each bump was obtained as the summation of each asperity force in contact with the substrate. To account for the variability observed in the removal of particles, the number of bumps and roughness values of particles are assumed to be random, respectively, with Poisson and log-normal distributions. For particle separation from the surface, the theory of critical moment was used, and the orientation of bumps on the surface was considered when determining the range of shear velocity needed for removal of the irregularly, shaped particles. The effects of particle size, turbulent flow, particle irregularity, and particle surface roughness on detachment and resuspension were studied for different particles and surfaces. Model prediction for removal of rough, irregularly shaped graphite particles from steel substrate was compared with the available experimental data and earlier numerical models, and good agreement was obtained. This study may find application in adhesion and detachment of irregular particles from flooring in indoor and outdoor environments.  相似文献   
28.
The binational Great Lakes Water Quality Agreement (GLWQA) revised Lake Erie’s phosphorus (P) loading targets, including a 40% western and central basin total P (TP) load reduction from 2008 levels. Because the Detroit and Maumee River loads are roughly equal and contribute almost 90% of the TP load to the western basin and 54% to the whole lake, they have drawn significant policy attention. The Maumee is the primary driver of western basin harmful algal blooms, and the Detroit and Maumee rivers are key drivers of central basin hypoxia and overall western and central basin eutrophication. So, accurate estimates of those loads are particularly important. While daily measurements constrain Maumee load estimates, complex flows near the Detroit River mouth, along with varying Lake Erie water levels and corresponding back flows, make measurements there a questionable representation of loading conditions. Because of this, the Detroit River load is generally estimated by adding loads from Lake Huron to those from the watersheds of the St. Clair and Detroit rivers and Lake St. Clair. However, recent research showed the load from Lake Huron has been significantly underestimated. Herein, I compare different load estimates from Lake Huron and the Detroit River, justify revised higher loads from Lake Huron with a historical reconstruction, and discuss the implications for Lake Erie models and loading targets.  相似文献   
29.
Weekly air samples of 25000 m(3) volume were taken with two air samplers over a period of one year in 2000-2001 in the town of Kurchatov in Kazakhstan. For another three-month period in 2001, the samplers were run in the city of Astana, about 500 km west of Kurchatov. (137)Cs, Pu and U concentrations were determined from the filters. Pu activities in Kurchatov varied in a 100-fold range; median (239,240)Pu activities were 100 nBq/m(3) and (238)Pu activities 34 nBq/m(3). The corresponding values for Astana were considerably lower: 29 and 9 nBq/m(3), respectively, and in half of the filters the (238)Pu activity was below the detection limit. Plutonium concentration correlated with the amount of dust retained on the filters only at the highest dust loads. Also no correlation between wind speed and the plutonium activity in the filters was observed. Thus, resuspension does not seem to be the mechanism responsible for the airborne plutonium. No clear seasonal variation of Pu air concentration was observed, though levels were somewhat elevated in February to April. There was no correlation between the plutonium and (137)Cs concentrations. In most of the filters the cesium concentration was below the detection limit, but in those filters where it could be detected the cesium concentration was practically constant at 3.9+/-1.6 microBq/m(3). Dose estimation for the inhalation of the airborne plutonium gave a low value of 0.018 microSv/a for the inhabitants in Kurchatov, which is about a thousand times lower than the dose caused by the naturally occurring (210)Po. Air parcel trajectory analysis indicated that the observed Pu activities in the air could not unambiguously be attributed to the most contaminated areas at the Semipalatinsk Test Site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号