首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10061篇
  免费   1181篇
  国内免费   438篇
电工技术   210篇
综合类   644篇
化学工业   4938篇
金属工艺   243篇
机械仪表   286篇
建筑科学   476篇
矿业工程   110篇
能源动力   445篇
轻工业   1563篇
水利工程   134篇
石油天然气   322篇
武器工业   52篇
无线电   446篇
一般工业技术   1274篇
冶金工业   166篇
原子能技术   147篇
自动化技术   224篇
  2024年   52篇
  2023年   242篇
  2022年   414篇
  2021年   528篇
  2020年   476篇
  2019年   385篇
  2018年   376篇
  2017年   410篇
  2016年   482篇
  2015年   502篇
  2014年   624篇
  2013年   698篇
  2012年   681篇
  2011年   673篇
  2010年   494篇
  2009年   563篇
  2008年   455篇
  2007年   579篇
  2006年   520篇
  2005年   493篇
  2004年   338篇
  2003年   327篇
  2002年   254篇
  2001年   215篇
  2000年   171篇
  1999年   131篇
  1998年   94篇
  1997年   108篇
  1996年   64篇
  1995年   55篇
  1994年   42篇
  1993年   26篇
  1992年   32篇
  1991年   32篇
  1990年   12篇
  1989年   20篇
  1988年   9篇
  1987年   17篇
  1986年   13篇
  1985年   18篇
  1984年   8篇
  1983年   14篇
  1982年   16篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Hydrogels are polymeric materials widely used in medicine due to their similarity with the biological components of the body. Hydrogels are biocompatible materials that have the potential to promote cell proliferation and tissue support because of their hydrophilic nature, porous structure, and elastic mechanical properties. In this work, we demonstrate the microwave-assisted synthesis of three molecular weight varieties of poly(ethylene glycol) dimethacrylate (PEGDMA) with different mechanical and thermal properties and the rapid photo of them using 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184) as UV photoinitiator. The effects of the poly(ethylene glycol) molecular weight and degree of acrylation on swelling, mechanical, and rheological properties of hydrogels were investigated. The biodegradability of the PEGDMA hydrogels, as well as the ability to grow and proliferate cells, was examined for its viability as a scaffold in tissue engineering. Altogether, the biomaterial hydrogel properties open the way for applications in the field of regenerative medicine for functional scaffolds and tissues.  相似文献   
102.
Diesel is an important fuel, partly because of the longevity and cleanliness of diesel engines. Often, polymers are in direct contact with diesel and understanding compatibility is critical. Polyoxymethylene (POM) is a thermoplastic used to manufacture automotive fuel pump gears and rotors due to its low coefficient of friction and thermal and dimensional stability. In this study, tensile tests were performed on plain and glass fiber reinforced (POM and POMGF) after immersion in diesel at different temperatures (−10°C, 23°C, and 60°C) for 1000, 2000, 3000, 5000, and 10 000 hour. A mathematical model was developed using data from just three tensile stress-strain curves obtained at two different fluid temperatures and three different immersion times. Model and experimental results show good agreement with one another for all conditions tested.  相似文献   
103.
Polyethylene terephthalate (PET)/nano-hydroxyapatite (nHAp) composite granules were obtained using twin-screw extruder. Preforms were prepared by injection molding and then PET/nHAp bottles were produced by blow molding. For PET bottles with nHAp, the migration amounts of carboxylic acid (COOH), acetaldehyde (AA), diethylene glycol (DEG), and isophthalic acid (IPA); glass transition temperature (Tg); melting temperature (Tm); and the maximum crystallization temperature (Tcry) were measured. The load-carrying capacity, burst strength, stress cracking, and regional material distribution tests were carried out on the bottles. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and ultraviolet transmittance analyses were conducted to explain the changes in mechanical, chemical, physical properties, and light transmission of bottles. It was found out that the COOH amount increased and the AA content decreased with increasing nHAp amount. On the other hand, no change was observed in the amounts of DEG and IPA. Although the mechanical properties such as load-carrying capacity and burst strength of the bottles have improved, it has been determined that the standard environmental stress crack resistance test procedure cannot be applied to such a composite. Experimental findings indicate that nHAp disrupts the chemical structure of PET and it isolates harmful chemicals such as AA by forming intermolecular bonds. Moreover, with the addition of up to 0.8% nHAp, PET bottles block the light transmission approximately 80% within 400–700 nm wave length zone. The study demonstrates that the PET/nHAp composite bottles can be used in the food industry, particularly in the packaging of milk and milk products which are vulnerable to light exposure.  相似文献   
104.
Thermal degradation of PVC occurs in two stages, with each stage subdivided into two substages. The first refers to the dehydrochlorination, where hydrochloric acid is formed, and giving polyene structures. Hitherto, the degradation mechanism and action of hydrochloric acid as a catalyst during the dehydrochlorination stage are poorly known. Recently, the importance of the tacticity has gained attention for its influence on the dehydrochlorination mechanism. The present work focused on the dehydrochlorination stage, studying the molecular structure by FTIR analysis and the kinetic parameters by TGA analysis in Nitrogen atmosphere, based on three mathematical methods: Friedman, Kissinger, and Flynn-Wall-Ozawa. The sample was a pure homopolymer obtained by suspension polymerization. The dehydrochlorination kinetics follows a first order reaction model and occurs by nucleation and growth. The dehydrochlorination begins with the loss of very labile chlorine atoms present in defective and isotactic molecular segments. The formed HCl acts as a catalyst in the degradation. Following 40% conversion, a drop in Ea is observed. After that, chlorine atoms present in syndiotactic and atactic sequences, are released and, added to the large number of polyene chain sequences, and an increase in Ea is observed up to 60% conversion, where the dehydrochlorination stage is concluded.  相似文献   
105.
SiC MOSFET可以大幅提升变流器的效率和功率密度,在高频、高温、高压等领域有较好的应用前景。但是,由于其短路耐受时间短、特性退化现象严重以及失效机理模糊等因素,致使SiC MOSFET的普及应用受到了限制。因此,探究SiC MOSFET短路失效与特性退化的机理,可以为SiC MOSFET器件的应用及其保护电路的设计提供指导,具有重要的研究价值。该文首先归纳SiC MOSFET的短路故障类型,并针对其中一种典型的短路故障进行详细的特性分析。在此基础上,论述SiC MOSFET单次短路故障后存在的两种典型失效模式,综述其在两种失效模式下的失效机理以及影响因素。其次,对SiC MOSFET经历重复短路应力后器件特性退化机理的研究现状进行系统的总结。最后指出当前SiC MOSFET短路失效与特性退化的研究难点,展望SiC MOSFET短路特性研究的发展趋势。  相似文献   
106.
Two 3Gd-TZP materials were manufactured from powders produced by intense mixing and milling of unstabilized zirconia starting powders and gadolinia as stabilizer oxide by hot pressing at 1250 °C – 1400 °C. The materials show a combination of high toughness and moderate strength. In detail depending on starting powder the two TZP showed distinct differences concerning transformation characteristics, sintering temperature dependence of mechanical properties and the tendency to develop R-curve related deformation features such as non-linear stress strain curves and formation of transformation bands prior to fracture.  相似文献   
107.
米用常温氨水水解TiOSO4过程中加入自制的表面活性剂制备了超细纳米TiO2粉末,用XRD,TEM和比表面仪对不同煅烧温度下的纳米TiO2粉末结构、粒径大小和比表面等进行了表征,研究了纳米TiO2粉末对甲基橙的光催化降解能力。研究表明煅烧温度在400℃~800℃时得到的纳米TiO2粉末呈锐钛矿结构,粒径约为5.5nm~9.6nm,比表面积高达189.45m^2/g;在850℃煅烧后所得的纳米TiO2粉末为锐钛矿与金红石型混晶结构;在l100℃时得到的纳米TiO2粉末为金红石型纳米TiO2粉末,同时微粒出现团聚且粒径变大。光催化实验表明:纳米TiO2粉末的光催化活性与煅烧温度密切相关,850℃煅烧1.5h所制得的混晶结构纳米TiO2粉末表现出较高的光催化活性。与国产商品纳米锐钛矿型TiO2相比,其降解甲基橙的速率约为国产商品纳米TiO2的1倍。  相似文献   
108.
The stability of lamellar structure is crucial for the creep resistance of TiAl alloys, but degradation of the lamellar structure is unavoidable at high temperatures. The degradation of the lamellar structure in PST crystals of Ti-48mol.%Al was studied during high temperature exposure (annealing and creep testing) to examine how to make a stable lamellar structure with high creep deformation resistance. Since the six orientation variants of γ lamellae are nucleated independently of the adjoining lamellae, pseudo twin and 120° rotational fault boundaries are most frequently observed at the initial stage of lamellar formation. The preferential removal of high energy (pseudo twin and 120° rotational fault) boundaries during the evolution of lamellar structure results in the highly probable appearance of a true twin boundary at a later stage of lamellar evolution. The coarsening of lamellar spacing and the spheroidization of the lamellae are the major degradation events occurring during creep deformation, and the migration of the lamellar boundaries brings both of them about. The lamellar structures of TiAl alloy contain four types of lamellar boundaries. The stability of the four types of boundaries decreases in the following order: γ/α2 > true twin > pseudo twin > or=120° rotational fault boundaries. The γ/α2 boundary has the highest stability (lowest mobility), and the high density of γ/α2 boundaries is proposed to make a stable lamellar structure with good creep resistance. A material having the high density of γ/α2 boundaries was produced through the heat treatment of a PST crystal in the α+γ two-phase regime. The excellent creep properties of the material were proven through creep tests of hard oriented PST crystals made of the material. This article is based on a presentation made in the 2002 Korea-US symposium on the “Phase Transformations of Nano-Materials,” organized as a special program of the 2002 Annual Meeting of the Korean Institute of Metals and Materials, held at Yonsei University, Seoul, Korea on October 25–26, 2002.  相似文献   
109.
通过XRD、TEM测试研究了自制ZnO/Ag纳米复合材料的结构和形貌,通过UV检测确定了以该纳米复合材料为光催化剂,在不同条件下对甲基橙的光催化降解率。结果表明:与空气煅烧相比,真空煅烧所得纳米复合材料的光催化降解效果更好,且光催化降解率随纳米复合材料用量增加而增大:甲基橙溶液的pH在5左右时,光催化降解率最高:H2O2浓度为0.9g/L时,光催化降解率可达100%。  相似文献   
110.
The thermal degradation of foamed polymethyl methacrylate (PMMA) patterns in the expendable pat-tern casting process has been studied. Various physical transitions that may occur during the degradation of PMMA have been determined using scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis, and the effects of polymer density on the degradation characteristics have been investigated. The results indicate that, when exposed to elevated temperatures, the polymer beads collapse at about 140 to 200 °. The collapsed beads melt at 260 ° and begin to volatilize. Peak volatilization temperatures are on the order of 370 °. The end temperature for volatilization is between 420 and 430 °. The initial density of the polymer does not have a significant effect on the transition tem-peratures associated with degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号