首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   38篇
  国内免费   13篇
电工技术   50篇
综合类   17篇
化学工业   264篇
金属工艺   52篇
机械仪表   4篇
建筑科学   3篇
矿业工程   5篇
能源动力   291篇
石油天然气   6篇
无线电   36篇
一般工业技术   76篇
冶金工业   12篇
原子能技术   4篇
自动化技术   2篇
  2024年   7篇
  2023年   35篇
  2022年   62篇
  2021年   61篇
  2020年   59篇
  2019年   46篇
  2018年   32篇
  2017年   18篇
  2016年   12篇
  2015年   10篇
  2014年   19篇
  2013年   22篇
  2012年   26篇
  2011年   45篇
  2010年   33篇
  2009年   37篇
  2008年   40篇
  2007年   45篇
  2006年   28篇
  2005年   11篇
  2004年   22篇
  2003年   17篇
  2002年   18篇
  2001年   12篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   12篇
  1996年   7篇
  1995年   9篇
  1994年   5篇
  1993年   9篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有822条查询结果,搜索用时 11 毫秒
101.
To improve the performance of direct ethanol fuel cells (DEFCs), a three-dimensional (3D), hierarchically structured Pd electrode has been successfully fabricated by directly electrodepositing Pd nanoparticles on the nickel foam (referred as Pd/Nickel foam electrode hereinafter). The electrochemical properties of the as-prepared electrode for ethanol oxidation have been investigated by cyclic voltammetry (CV). The results show that the oxidation peak current density of the Pd/Nickel foam electrode is 107.7 mA cm−2, above 8 times than that of Pd film electrode at the same Pd loading (0.11 mg cm−2), and a 90 mV negative shift of the onset potential is found on the Pd/Nickel foam electrode compared with the Pd film electrode. Furthermore, the peak current density of the 500th cycle remains 98.1% of the maximum value for the Pd/Nickel foam electrode after a 500-cycle test, whereas it is only 14.2% for the Pd film. The improved electrocatalytic activity and excellent stability of the Pd/Nickel foam electrode make it a favorable platform for direct ethanol fuel cell applications.  相似文献   
102.
Isotopic tracer and nuclear reaction analysis (NRA) are used to probe the identity of oxygen for CO formation during the catalytic partial oxidation (CPOX) of methane to synthesis gas on 18O2 labeled Rh (1 wt.%)/(Ce0.56Zr0.44)O2−x. Results reveal that methane is selectively oxidized by lattice oxygen ions from the catalyst to form carbon monoxide. 18O2 isotopic exchange experiments, as a function of temperature in the 0–850 °C range, were performed on Rh (1 wt.%)/(Ce0.56Zr0.44)O2−x, and (Ce0.56Zr0.44)O2−x. It was observed that the presence of rhodium considerably accelerates the oxygen exchange with the support; the maximal exchange rates could be observed at lower temperatures, 250 °C. This may be due to oxygen spillover from the metal particles to the oxide. Comparing results from the isotopic exchange experiments on Rh/γ-alumina and Rh (1 wt.%)/(Ce0.56Zr0.44)O2−x. It was revealed that oxygen conducting materials have a much higher oxygen storage capacity and isotopic exchange rate than non-oxygen conducting materials.  相似文献   
103.
Carbon supported bimetallic Pt-alloys (Pt0.75M0.25/C, with M = Ni or Co) are investigated as novel electrode materials for H2O2 reduction in acid solution. The alloy electrocatalysts, Pt0.75Ni0.25/C and Pt0.75Co0.25/C, as well as carbon supported Pt (Pt/C) are characterised using cyclic voltammetry. The electrocatalytic activity of the materials is studied using a rotating disc electrode system with a combination of linear scan voltammetry and chronoamperometry. It is found that the activity of Pt0.75M0.25/C electrocatalysts for H2O2 reduction is comparable to the activity of Pt/C electrocatalyst, with Pt0.75Co0.25/C exhibiting the best performance.  相似文献   
104.
Design of inexpensive and highly efficient bifunctional electrocatalyst is paramount for overall water splitting. In this study, amorphous Ni–Fe–P alloy was successfully synthesized by one-step direct-current electrodeposition method. The performance of Ni–Fe–P alloy as a bifunctional electrocatalyst toward both hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated in 30 wt% KOH solution. It was found that Ni–Fe–P alloy exhibits excellent HER and OER performances, which delivers a current density of 10 mA cm?2 at overpotential of ~335 mV for HER and ~309 mV for OER with Tafel slopes of 63.7 and 79.4 mV dec?1, respectively. Moreover, the electrolyzer only needs a cell voltage of ~1.62 V to achieve 10 mA cm?2 for overall water splitting. The excellent electrocatalytic performance of Ni–Fe–P alloy is attributed to its electrochemically active constituents, amorphous structure, and the conductive Cu Foil.  相似文献   
105.
Zeolitic Imidazolate Frameworks (ZIF) is one of the potential candidates as highly conducting networks with large surface area with a possibility to be used as catalyst support for low temperature fuel cells. In the present study, highly active state-of-the-art PtCo@NCNTs (Nitrogen Doped Carbon Nanotube) catalyst was synthesized by pyrolyzing ZIF-67 along with Pt precursor under flowing ArH2 atmosphere. The multi-walled NCNTs were densely grown on the surface of ZIF particles after pyrolysis. The high resolution TEM examination was employed to examine the nature of the PtCo particles as well as multi-walled NCNTs. Rotating disk electrode study was used for measuring oxygen reduction reaction performance for PtCo@NCNTs in 0.1 M HClO4 and compared with commercial Pt/C catalyst. Fuel cell performance with PtCo@NCNT and commercial Pt/C catalysts was evaluated at 70 °C using Nafion-212 electrolyte using H2 and O2 gases (100% RH) and the observed peak power density of 630 and 560 mW cm?2, respectively.  相似文献   
106.
Electrochemical water-splitting is widely regarded as one of the essential strategies to produce hydrogen energy, while Metal-organic frameworks (MOFs) materials are used to prepare electrochemical catalysts because of its controllable morphology and low cost. Herein, a series of trimetallic porous Pt-inlaid Ni–Fe nanocubes (NCs) are developed with bifunctions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In the process of prepare the electrochemical catalysts, Pt nanoparticles are uniformly embedded in the Fe–Ni PBA cube structure, and ascorbic acid is employed as a reducing agent to reduce Pt2+ to Pt nanoparticles. In this work, the cubic structure of Fe–Ni PBA is maintained and the noble metal Pt nanoparticles are embedded. Remarkably, the formation of PBA cubes, Pt inlay and reduction are completed in one step, and Pt nanoparticles are embedded by a simple method for the first time. By employing acid etching method, a porous structure is formed on the PBA cube, which increases the exposed area of the catalyst and provides more active sites for HER and OER. Due to the porous structure, highly electrochemical active surface area and the embedded of highly dispersed Pt nanoparticles, the porous 0.6 Ni–Fe–Pt nanocubes (NCs) exhibits excellently electrocatalytic performance and durable stability to HER and OER. In this work, for HER and OER, the Tafel slopes are 81 and 65 mV dec−1, the overpotential η at the current density of 10 mA cm−2 are 463 and 333 mV, and the onset potential are 0.444 and 1.548 V, respectively. And after a 12-h i-t test and 1000 cycles of cyclic voltammetry (CV), it maintained high stability and durability. This work opens up a new preparation method for noble metal embedded MOF materials and provided a new idea for the preparation of carbon nanocomposites based on MOF.  相似文献   
107.
Developing low-cost and high efficient electrocatalysts for both oxygen and hydrogen evolution reaction in an alkaline electrolyte toward overall water splitting is still a significant challenge. Here, a novel hierarchically heterostructured catalyst composed of ultrasmall Mo2C and metallic Co nanoparticles confined within a carbon layer is produced by a facile phase separation strategy. During thermal reduction of CoMoO4 nanosheets in CO ambient, in-situ generated nanoscale Co and ultrafine Mo2C conformally encapsulated in a conductive carbon layer. In addition, some carbon nanotubes catalyzed by Co nanoparticles vertically grew on its surface, creating 3D interconnected electron channels. More importantly, the integrated C@Mo2C/Co nanosheets assembled into the hierarchical architecture, providing abundant active surface and retaining the structural integrity. Benefiting from such unique structure, the constructed hierarchical heterostructure shows low overpotentials of 280 mV and 145 mV to reach a current density of 10 mA cm−2 for OER and HER in an alkaline electrolyte. Furthermore, the symmetrical electrolyzer assembled with catalyst exhibits a small cell voltage of 1.67 V at 10 mA cm−2 in addition to outstanding durability, demonstrating the great potential as a high efficient bifunctional electrocatalyst for overall water splitting.  相似文献   
108.
Facile yet efficient synthesis of high-performance nanocatalysts for hydrogen evolution from ammonia-borane (AB) hydrolysis is paramount. Here, we reported a novel hybrid nanocatalyst comprised of Rh nanoclusters (1.56 nm in diameters) anchored on nitrogen (N)-doped carbon nanotubes with embedded Ni nanoparticles (Ni@NCNTs), which was fabricated through adsorption of Rh ions on Ni@NCNTs. The achieved hybrid of Rh/Ni@NCNTs displayed excellent catalytic property (Turnover frequency: 959 min−1) toward AB hydrolysis, higher than many prior developed Rh-based catalysts. Note that this hybrid could be reused for at least nine runs with complete AB conversion to hydrogen. Rh nanoclusters with small size exhibiting high atom utilization and the synergetic effect between Ni and Rh are responsible for the excellent catalytic property of Rh/Ni@NCNTs toward AB hydrolysis. This work highlights the importance of utilization of magnetically recyclable Ni@NCNTs as support and synergetic component for efficient hydrolysis of AB.  相似文献   
109.
An effective bi-functional electrocatalyst of Co3O4/Polypyrrole/Carbon (Co3O4/Ppy/C) nanocomposite was prepared through a simple dry chemical method and used to catalyze the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Three types of carbon support as Vulcan carbon, reduced graphite oxide (RGO) and multi-walled carbon nanotubes (MCNTs) were used to study the influence on electrochemical reactions. Spherical shaped Co3O4 nanoparticles with 8–10 nm was found uniformly distributed on Ppy/C composite, which were analyzed by X-ray diffraction and transmission electron microscopy techniques. Amongst, Co3O4/Ppy/MWCNT shows improved bifunctional electrocatalytic activity towards both OER and HER with relatively low over potential (340 mV vs. 490 mV at 10 mA cm−2) and Tafel slope (87 vs. 110 mV dec−1). In addition to that, MWCNT supported Co3O4/Ppy nanocomposite exhibits good electronic conductivity and electrochemical stability up to 2000 potential cycles. The results clearly indicate that the Co3O4/Ppy/MWCNT nanocomposite could be the promising bi-functional electrocatalyst for efficient water electrolysis.  相似文献   
110.
Development of highly effective and stable electrocatalysts is urgent for various energy conversion applications. Herein, a facile co-reduction approach was developed to fabricate three-dimensional (3D) hyperbranched PtRh nanoassemblies (NAs) under solvothermal conditions, where creatinine and cetyltrimethylammonium chloride (CTAC) were employed as the structure-directing agents. The as-synthesized nanocatalyst exhibited intriguing catalytic characters for hydrogen evolution reduction (HER) with a low overpotential (20 mV) at 10 mA cm−2 and a small Tafel slope (49.01 mV dec−1). Meanwhile, the catalyst showed remarkably enlarged mass activity (MA: 2.16/2.02 A mg−1) and specific activity (SA: 4.16/3.88 mA cm−2) towards ethylene glycol and glycerol oxidation reactions (EGOR and GOR) alternative to commercial Pt black and homemade Pt3Rh nanodendrites (NDs), PtRh3 NDs and Pt nanoparticles (NPs). This method offers a feasible platform to fabricate bifunctional, efficient, durable and cost-effective nanocatalysts with finely engineered structures and morphologies for renewable energy devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号