首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1974篇
  免费   400篇
  国内免费   11篇
电工技术   10篇
综合类   21篇
化学工业   1011篇
金属工艺   13篇
机械仪表   45篇
建筑科学   15篇
矿业工程   8篇
能源动力   7篇
轻工业   46篇
水利工程   1篇
石油天然气   14篇
武器工业   5篇
无线电   546篇
一般工业技术   536篇
冶金工业   7篇
原子能技术   17篇
自动化技术   83篇
  2024年   18篇
  2023年   179篇
  2022年   44篇
  2021年   151篇
  2020年   149篇
  2019年   135篇
  2018年   111篇
  2017年   120篇
  2016年   95篇
  2015年   115篇
  2014年   84篇
  2013年   118篇
  2012年   151篇
  2011年   95篇
  2010年   85篇
  2009年   100篇
  2008年   88篇
  2007年   81篇
  2006年   83篇
  2005年   72篇
  2004年   72篇
  2003年   64篇
  2002年   39篇
  2001年   26篇
  2000年   12篇
  1999年   14篇
  1998年   18篇
  1997年   8篇
  1996年   15篇
  1995年   7篇
  1994年   10篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   5篇
  1983年   1篇
排序方式: 共有2385条查询结果,搜索用时 13 毫秒
101.
A series of nanocomposite hydrogels for mucoadhesive were prepared from acrylic acid, poly(ethylene glycol) methyl ether acrylate, and intercalated bentonite clay by photopolymerization. The microstructures were identified by X‐ray diffraction (XRD). Results showed that the swelling ratio for the present nanocomposite hydrogels decreased with an increase of bentonite, whereas the gel strength and Young's modulus of the present gels increased with an increase of bentonite. However, the adhesive force of the present gels did not decrease with an increase of bentonite. XRD results indicated that the exfoliation of bentonite was achieved in the xerogels and swollen gels. Finally, the drug‐release behaviors for these gels were also assessed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2934–2941, 2004  相似文献   
102.
A series of nanocomposite hydrogels were prepared from various ratios of N‐isopropylacrylamide (NIPAAm) and organic montmorillonite (MMT). The influence of the extent of MMT in the NIPAAm/MMT nanocomposite hydrogels on the physical properties and drug‐release behavior was the main purpose of this study. The microstructure and morphology were identified by X‐ray diffraction (XRD) and scanning electronic microscopy (SEM). The results showed that the swelling ratios for these nanocomposite hydrogels decreased with increase in the content of MMT. The gel strength and Young's modulus of the gels also increased with increase in the content of MMT. XRD results indicated that the exfoliation of MMT was achieved in the swollen state. Finally, the drug‐release behavior for the gels was also assessed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3652–3660, 2003  相似文献   
103.
A series of thermosensitive copolymeric hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm) and poly(ethylene glycol) methylether acrylate (PEGMEAn), which was synthesized from acryloyl chloride and poly(ethylene glycol) mono methylether with three oxyethylene chain lengths. Investigation of the effect of the chain length of oxyethylene in PEGMEAn, and the amount of the PEGMEAn in the NIPAAm/PEGMEAn copolymeric gels, on swelling behavior in deionized water was the main purpose of this study. Results showed that the swelling ratio for the present copolymeric gels increased with increasing chain length of oxyethylene in PEGMEAn and also increased with increase in the amount of PEGMEAn in the copolymeric gels. However, the gel strength and effective crosslinking density of these gels decreased with increase in swelling ratio. Some kinetic parameters were also evaluated in this study. Finally, the drug release and drug delivery behavior for these gels were also assessed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1683–1691, 2003  相似文献   
104.
N‐Isopropylacrylamide/acrylic acid copolymer hydrogels were synthesized with ultrasound. The thermoresponsive phase behaviors of gels synthesized with ultrasound (US gels) were investigated and compared with those of gels synthesized in the absence of ultrasound (FR gels). The US gels showed thermoresponsive swelling behavior with a large hysteresis over a wide range of temperatures around its phase‐transition temperature. The hysteresis became larger with an increasing copolymerized acrylic acid content. The US gels were also characterized from the viewpoint of chemical, hydration, and macroscopic physical structures. Little difference was observed in the chemical and hydration structures of the FR gels and US gels. The macroscopic physical structure of the US gels was, however, distinct from that of the FR gels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2449–2452, 2003  相似文献   
105.
Biocompatible and biodegradable pH‐responsive hydrogels based on poly(acrylic acid) and chitosan were prepared for controlled drug delivery. These interpolymeric hydrogels were synthesized by a γ‐irradiation polymerization technique. The degree of gelation was over 96% and increased as the chitosan or acrylic acid (AAc) content increased. The equilibrium swelling studies of hydrogels prepared under various conditions were carried out in an aqueous solution, and the pH sensitivity in a range of pH 1–12 was investigated. The AAc/chitosan hydrogels showed the highest water content when 30 vol % AAc and 0.1 wt % chitosan were irradiated with a 30 kGy dose of radiation. In addition, an increase of the degree of swelling with an increase in the pH was noticed and it had the highest value at pH 12. The drug 5‐fluorouracil was loaded into these hydrogels and the release studies were carried out in simulated gastric and intestinal fluids. The in vitro release profiles of the drugs showed that more than 90% of the loaded drugs were released in the first 1 h at intestinal pH and the rest of the drug was released slowly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3270–3277, 2003  相似文献   
106.
Highly transparent cellulose hydrogels with physical crosslinkage were prepared from nonaqueous organic cellulose solutions and viscose by coagulating and regenerating cellulose in an aqueous solution containing a water‐miscible organic solvent. Nonaqueous organic cellulose solutions used were LiCl/dimethylacetamide, paraformaldehyde/dimethyl sulfoxide, and triethylammonium chloride/dimethyl sulfoxide. Preparation conditions and physical properties of the transparent cellulose hydrogels were studied. The transparency of the cellulose hydrogels depended on the composition of the aqueous solution containing the organic solvent. Furthermore, transparent cellulose hydrogels from viscose showed high tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3020–3025, 2003  相似文献   
107.
Biodegradable polymers and the hydrogels have been increasingly applied in a variety of biomedical fields and pharmaceutics. α,β‐Poly(N‐2‐hydroxyethyl‐DL ‐aspartamide), PHEA, one of poly(amino acid)s with hydroxyethyl pendants, are known to be biodegradable and biocompatible, and has been studied as an useful biomaterial, especially for drug delivery, via appropriate structural modification. In this work, hydrogels based on PHEA were prepared by two‐step reaction, that is, the crosslinking of polysuccinimide, the precursor polymer, with oligomeric PEG or PEI‐diamines and the following nucleophilic ring‐opening reaction by ethanolamine. Soft hydrogels possessing varying degrees of gel strength could be prepared easily, depending on the amount of different crosslinking reagents. The swelling degrees, which were in the range of 10–40 g–water/dry gel, increased somewhat at higher temperature, and also at alkaline pH of aqueous solution. A typical hydrogel remained almost unchanged for 1 week, at 37°C in phosphate buffer of pH 7.4, and then seemed to degrade slowly as time. A porous scaffold could be fabricated by the freeze drying of water‐swollen gel. The PHEA‐based hydrogels have potential for useful biomaterial applications including current drug delivery system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3741–3746, 2003  相似文献   
108.
A series of swellable ethylene dimethacrylate‐crosslinked poly(2‐hydroxyethyl methacrylate) (PHEMA) sheets of homogeneous (nonporous) structure or with different degrees of swelling and porosities was produced by bulk polymerization in either the absence or the presence of various diluents (porogens). Calculations performed by use of the solubility parameter δ of the reaction components indicate that the solvation conditions of the polymerization system change, depending on the solvating power of the diluent, which thus controls the porosity. Pore volume also seemed to be sensitive to the presence of the linear polymer diluent. Polystyrene (PS) showed, compared with poly(methyl methacrylate) (PMMA), a higher precipitating ability to form porous PHEMA sheets with an increased pore size because of its higher noncompatibility with newly formed crosslinked PHEMA. Given that PHEMA hydrogel is well known for its biocompatibility, it was used here as a potential carrier of cells in transplantation therapies. Attachment and growth of mouse embryonic stem (ES) cells on gelatin‐coated transparent PHEMA hydrogel substrates were examined. Two days after plating, survival and morphology of ES cells were largely similar on both PHEMA hydrogel sheets and in petri dishes as controls. This suggests that PHEMA hydrogels are likely candidates for application in transplantation therapies involving ES cells. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 425–432, 2003  相似文献   
109.
Poly(ethylene oxide) (PEO) star polymers were prepared by anionic polymerization of methacryloyl chloride and glyceryl trimethacrylate with sec‐butyllithium in cyclohexane. The ensuing polymers were grafted with poly(ethylene glycol) of molecular weight 400. The final product was washed with methylene chloride and analyzed with infrared spectroscopy, differential scanning calorimetry, and thermogravimetry. Star polymers of PEO were also prepared by anionic polymerization of glycidol with sec‐butyllithium in cyclohexane. The initiator was chosen so as to yield a polymer of 10,000 molecular weight. The resulting polymers were analyzed by nuclear magnetic resonance, infrared spectroscopy, and thermogravimetry. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 322–327, 2003  相似文献   
110.
Poly(ethylene glycol)‐based nanoparticles have received significant attention in the field of biomedicine. When they are copolymerized with pH‐ or temperature‐sensitive comonomers, their small size allows them to respond very quickly to changes in the environment, including changes in the pH, ionic strength, and temperature. In addition, the high surface‐to‐volume ratio makes them highly functionalized. In this work, nanoparticles composed of temperature‐sensitive poly(N‐isopropylacrylamide), poly(ethylene glycol) 400 dimethacrylate, and poly(ethylene glycol) 1000 methacrylate were prepared by a thermally initiated, free‐radical dispersion polymerization method. The temperature‐responsive behavior of the hydrogel nanoparticles was characterized by the study of their particle size with photon correlation spectroscopy. The size of the nanoparticles varied from 200 to 1100 nm and was a strong function of the temperature of the system, from 5 to 40°C. The thermal, structural, and morphological characteristics were also investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1678–1684, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号