首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3197篇
  免费   65篇
  国内免费   46篇
电工技术   33篇
综合类   82篇
化学工业   1019篇
金属工艺   127篇
机械仪表   89篇
建筑科学   161篇
矿业工程   43篇
能源动力   159篇
轻工业   306篇
水利工程   17篇
石油天然气   39篇
武器工业   6篇
无线电   254篇
一般工业技术   686篇
冶金工业   130篇
原子能技术   29篇
自动化技术   128篇
  2024年   10篇
  2023年   47篇
  2022年   53篇
  2021年   76篇
  2020年   74篇
  2019年   61篇
  2018年   73篇
  2017年   84篇
  2016年   85篇
  2015年   75篇
  2014年   172篇
  2013年   194篇
  2012年   149篇
  2011年   198篇
  2010年   142篇
  2009年   207篇
  2008年   202篇
  2007年   235篇
  2006年   188篇
  2005年   171篇
  2004年   136篇
  2003年   102篇
  2002年   101篇
  2001年   102篇
  2000年   90篇
  1999年   49篇
  1998年   46篇
  1997年   37篇
  1996年   20篇
  1995年   28篇
  1994年   17篇
  1993年   16篇
  1992年   11篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1968年   1篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
  1958年   1篇
排序方式: 共有3308条查询结果,搜索用时 15 毫秒
151.
《Ceramics International》2022,48(5):6691-6697
The speed of sound is a critical parameter in the test of mechanical and thermal properties. In this work, we proposed a testing method to obtain the elastic modulus of silica aerogel from the sound speed formulas. The solid thermal conductivity of the silica aerogel is experimentally measured for predicting the sound speeds, and then the elastic modulus is calculated based on the elasticity sound speed model. The experimental data of the solid thermal conductivity of silica aerogels with different densities are employed and the obtained elastic modulus is fitted as a power-law exponential function of the density. Two existing sound speed models and three groups of available experimental data are also employed to validate the present fitting relation, and good agreement is obtained for the silica aerogel in the density range of 150–350 kg/m3. The fitting formula can also be extended to estimate the elastic modulus of the glass fiber-reinforced silica aerogel composite. The results show that the elastic modulus of the aerogel composite is sensitive to the glass fiber volume fraction, while the thermal conductivity is weakly dependent on the glass fiber volume fraction at room temperature in the studied range of fiber volume fraction.  相似文献   
152.
《Ceramics International》2022,48(8):11265-11272
Three dimensional silica mesh structures are prepared through a new and simple method for enhancing the quantum dot sensitized solar cells performance and stability.Silica patterns are made on the top of the TiO2 photoanodes and a marked improvement in light scattering properties of meshed structures is confirmed by diffuse reflectance spectroscopy measurements. This improvement enhances the current density and consequently the cells ‘efficiency. Parameters of electron transport in cells are explored by electrochemical impedance spectroscopy (EIS). According to the EIS results, silica mesh declines the recombination rate in cells in a clear way. Here more than 50% efficiency improvement is obtained in meshed structures in comparison to cells with normal TiO2 photoanode structures. The insulated silica mesh, reduces the electrolyte's deleterious effect on the semiconductor layers and the cells’ stability is improved.  相似文献   
153.
《Ceramics International》2022,48(9):12217-12227
In the development of high-performance lithium-ion batteries (LIBs), the composition and structure of electrode materials are of critical importance. Silicon has a theoretical specific capacity 10 times that of graphite, nonetheless, its application as an anode material confronts challenge as it undergoes huge volume change and pulverization amidst the alloying and dealloying processes. Herein, a novel method to prepare a multilayer Si-based anode was proposed. Three layers, SiO2, nickel and triethylene glycol (TEG), were coated successively on Si nanoparticles, which served respectively as the sources of SiOx, sacrificial templates and carbon. Nickel can not only serve as a hollow template, but also play a catalytic role, which makes carbonization and redox reactions occur synchronously under a mild condition. Amid the carbonization process of TEG at 450 °C, several-nm-thick SiO2 layer can react with the as-derived carbon to form a silicon suboxides (SiOx (0 < x < 2)) intermedium layer. After removing the nickel template, a micro-nano scaled Si@SiOx@void@C with conformal multilayer-structure can be obtained. The BET specific surface area and pore volume of powders were increased dramatically because of the derivation of abundant voids, which can not only buffer the swelling effect of silicon, but also provide richer ionic conductivity. The as-assembled half-cell with Si@SiOx@void@C as the anode material possesses high capacity (~1000 mAh g?1 at 3 A g?1), long cycle life (300 cycles with 77% capacity retention) and good rate performance (558 mAh g?1 at 5 A g?1).  相似文献   
154.
《Ceramics International》2022,48(16):22699-22711
An integrated experimental and thermodynamic modeling study of the phase equilibria in the ‘CuO0.5’-MgO-SiO2 system in equilibrium with liquid Cu metal has been undertaken to better understand the reactions between MgO-based refractories and liquid slag in copper converting and refining processes. New experimental phase equilibria data at 1250–1680 °C were obtained for this system using a high-temperature equilibration of synthetic mixtures with predetermined compositions in silica ampoules or magnesia crucibles, a rapid quenching technique, and electron probe X-ray microanalysis of the equilibrated phase compositions. The system has been shown to contain primary phase fields of cristobalite (SiO2), tridymite (SiO2), pyroxene/protoenstatite (MgSiO3), olivine/forsterite (Mg2SiO4), periclase (MgO), and cuprite (Cu2O). Three regions of 2-liquid immiscibility were found—two in the high-silica range of compositions above the cristobalite primary phase field (close to ‘CuO0.5’-SiO2 and MgO–SiO2 binaries) and one in the low-SiO2, high-‘CuO0.5’ compositional region above the periclase and olivine phase fields. The results obtained in this study indicate that silica in high-copper refining slags likely led to olivine and pyroxene phase formation, increased solubility of MgO in liquid slag, and decline in the performance of MgO-based refractories. New experimental data were used in the development of a thermodynamic database describing this pseudo-ternary system.  相似文献   
155.
《Ceramics International》2022,48(17):24471-24475
Al2O3–SiC composite powder (ASCP) was successfully synthesized using a novel molten-salt-assisted aluminum/carbothermal reduction (MS-ACTR) method with silica fume, aluminum powder, and carbon black as raw materials; NaCl–KCl was used as the molten salt medium. The effects of the synthesis temperature and salt-reactant ratio on the phase composition and microstructure were investigated. The results showed that the Al2O3–SiC content increased with an increase in molten salt temperature, and the salt–reactant ratio in the range of 1.5:1–2.5:1 had an impact on the fabrication of ASCP. The optimum condition for synthesizing ASCP from NaCl–KCl molten salt consisted of maintaining the temperature at 1573 K for 4 h. The chemical reaction thermodynamics and growth mechanism indicate that the molten salt plays an important role in the formation of SiC whiskers by following the vapor-solid growth mode in the MS-ACTR treatment. This study demonstrates that the addition of molten salt as a reaction medium is a promising approach for synthesizing high-melting-point composite powders at low temperatures.  相似文献   
156.
《Ceramics International》2022,48(20):30151-30163
The effect of polymeric nanocapsule capping in benzotriazole encapsulated into halloysite nanoclay (HNTs) dispersed into hybrid silica coatings was investigated for corrosion protection of mild steel. Optimization of the amount of inhibitor-loaded halloysite nanotubes with and without capping in the coating sol was carried out. The prepared formulations were dip-coated on mild steel substrates using dip-coater and then cured at 130 °C for 1 h. Surface morphology and elemental analysis of the nanoclay were studied using scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction and Fourier Transform Infrared spectroscopy analyses were carried out to confirm the encapsulation and capping of the halloysite nanoclay. The anti-corrosion and autonomic-healing properties of bare and coated substrates in 3.5 wt% NaCl solution were studied using electrochemical impedance spectroscopy, potentiodynamic polarization measurements and scanning vibrating electrode technique for varying exposure times. The coatings generated from the capped inhibitor-loaded HNTs dispersed sol-gel matrix was seen to provide higher corrosion resistance when compared to uncapped HNT based silica coatings. Electrochemical studies carried out for capped inhibitor-loaded HNT based coatings have shown an increase in charge transfer resistance to 108 Ω cm2 from 106 Ω cm2 of uncapped inhibitor-loaded HNT based coatings.  相似文献   
157.
以硅藻土和白炭黑作为复合填料填充天然橡胶(NR),研究硅藻土用量对硅藻土/白炭黑复合填料补强天然橡胶(DCNR)复合材料性能的影响。结果表明:随着硅藻土用量的增大,DCNR复合材料的t10和t90先增大后减小;硅藻土用量较小时,可提高DCNR复合材料的邵尔A型硬度;硅藻土用量过大,易产生明显的团聚,从而降低硅藻土/白炭黑复合填料对NR基体的补强效果,使得DCNR复合材料的综合物理性能下降。  相似文献   
158.
Equilibrium and isosteric heat of adsorption for the system of chloroform and USY-type zeolite were studied. The USY-type zeolite (PQ Co., SiO2/Al2O3=70) was used both as a pure crystalline powder and as granulated particles with binder. Chloroform was reagent grade. The adsorption equilibria were measured using a gravimetric method and were expressed as isotherms. A chromatographic method (i.e. pulse response of chloroform through the USY column with helium carrier) was used to get the initial slope of the isotherms. In the simulation, the GCMC method was used to calculate amounts adsorbed for various conditions. FF parameters were confidently applied. And modified structure model was effective for simulation. This paper was presented at The 5th International Symposium on Separation Technology-Korea and Japan held at Seoul between August 19 and 21, 1999.  相似文献   
159.
按莫来石骨料占65%(质量分数),刚玉和黏土组成的混合粉占35%(质量分数)配料,分别外加占原料总质量4%的水、硅溶胶、铝硅混合凝胶作结合剂,研究了结合剂种类对刚玉-莫来石材料经1 100、1 400和1 600℃分别保温3 h烧后的性能及显微结构的影响,并在此基础上研究了铝硅混合凝胶加入量(分别为1%、2%、3%、4%)及配比(m(Al2O3):m(SiO2)分别为8:2、7:3、4:6)对刚玉-莫来石制品常温性能的影响.结果表明:以铝硅混合凝胶为结合剂的刚玉-莫来石试样,经1 400、1 600℃烧后的常温、高温抗折强度和抗热震性均比仅加硅溶胶或水的好,但显气孔率偏大;当铝硅混合凝胶加入量为2%且m(Al2O3):m(SiO2)=7:3时,烧后试样的常温强度最高.  相似文献   
160.
Ekrem Kalkan   《Applied Clay Science》2009,43(3-4):296-302
Clayey soils containing smectites are widely used for construction of liner and cover systems to reduce the hydraulic conductivity in geotechnical applications because of their low permeability and high cation exchange capacity. However, the compacted clayey soils crack on drying because of their high swelling potential, and their hydraulic conductivities increase. To solve this problem, it is essential to stabilize the clayey soils using additive materials. The aim of this study is to examine the suitability of silica fume as a stabilization material to reduce the development of desiccation cracks in compacted clayey liner and cover systems. Natural clayey soil and clayey soil–silica fume mixtures were compacted at the optimum moisture content and subjected to laboratory tests. The results show that silica fume decreases the development of desiccation cracks on the surface of compacted samples. We concluded that silica fume waste material can be successfully used to reduce the development of desiccation cracks in compacted clayey liner and cover systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号