首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388106篇
  免费   40938篇
  国内免费   32874篇
电工技术   32147篇
技术理论   16篇
综合类   31397篇
化学工业   63065篇
金属工艺   19307篇
机械仪表   28112篇
建筑科学   29224篇
矿业工程   9015篇
能源动力   15757篇
轻工业   28576篇
水利工程   9843篇
石油天然气   12630篇
武器工业   4047篇
无线电   41766篇
一般工业技术   42311篇
冶金工业   11971篇
原子能技术   6012篇
自动化技术   76722篇
  2024年   1765篇
  2023年   5966篇
  2022年   11165篇
  2021年   12912篇
  2020年   12588篇
  2019年   11066篇
  2018年   10617篇
  2017年   13643篇
  2016年   15598篇
  2015年   17230篇
  2014年   22003篇
  2013年   25336篇
  2012年   28171篇
  2011年   32657篇
  2010年   23701篇
  2009年   23777篇
  2008年   24205篇
  2007年   27374篇
  2006年   24550篇
  2005年   21055篇
  2004年   17844篇
  2003年   14679篇
  2002年   11609篇
  2001年   8878篇
  2000年   7519篇
  1999年   6273篇
  1998年   5281篇
  1997年   4373篇
  1996年   3541篇
  1995年   2919篇
  1994年   2584篇
  1993年   1909篇
  1992年   1646篇
  1991年   1262篇
  1990年   1074篇
  1989年   854篇
  1988年   692篇
  1987年   459篇
  1986年   414篇
  1985年   453篇
  1984年   456篇
  1983年   384篇
  1982年   394篇
  1981年   205篇
  1980年   198篇
  1979年   92篇
  1978年   68篇
  1977年   70篇
  1976年   56篇
  1959年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Extracellular vesicles (EVs) are membranous structures, which are secreted by almost every cell type analyzed so far. In addition to their importance for cell-cell communication under physiological conditions, EVs are also released during pathogenesis and mechanistically contribute to this process. Here we summarize their functional relevance in asthma, one of the most common chronic non-communicable diseases. Asthma is a complex persistent inflammatory disorder of the airways characterized by reversible airflow obstruction and, from a long-term perspective, airway remodeling. Overall, mechanistic studies summarized here indicate the importance of different subtypes of EVs and their variable cargoes in the functioning of the pathways underlying asthma, and show some interesting potential for the development of future therapeutic interventions. Association studies in turn demonstrate a good diagnostic potential of EVs in asthma.  相似文献   
52.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   
53.
In this paper, a salinity gradient solar pond (SGSP) is used to harness the solar energy for hydrogen production through two cycles. The first cycle includes an absorption power cycle (APC), a proton exchange membrane (PEM) electrolyzer, and a thermoelectric generator (TEG) unit; in the second one, an organic Rankine cycle (ORC) with the zeotropic mixture is used instead of APC. The cycles are analyzed through the thermoeconomic vantage point to discover the effect of key decision variables on the cycles’ performance. Finally, NSGA-II is used to optimize both cycles. The results indicate that employing ORC with zeotropic mixture leads to a better performance in comparison to utilizing APC. For the base mode, unit cost product (UCP), exergy, and energy efficiency when APC is employed are 59.9 $/GJ, 23.73%, and 3.84%, respectively. These amounts are 47.27 $/GJ, 29.48%, and 5.86% if ORC with the zeotropic mixture is utilized. The APC and ORC generators have the highest exergy destruction rate which is equal to 6.18 and 10.91 kW. In both cycles, the highest investment cost is related to the turbine and is 0.8275 $/h and 0.976 $/h for the first and second cycles, respectively. In the optimum state the energy efficiency, exergy efficiency, UCP, and H2 production rate of the system enhances 42.44%, 27.54%,15.95%, and 38.24% when ORC with the zeotropic mixture is used. The maximum H2 production is 0.47 kg/h, and is obtained when the mass fraction of R142b, LCZ temperature, pumps pressure ratio, generator bubble point temperature are 0.603, 364.35 K, 2.12, 337.67 K, respectively.  相似文献   
54.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
55.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
56.
The combustion characteristics of ammonia/methanol mixtures were investigated numerically in this study. Methanol has a dramatic promotive effect on the laminar burning velocity (LBV) of ammonia. Three mechanisms from literature and another four self-developed mechanisms constructed in this study were evaluated using the measured laminar burning velocities of ammonia/methanol mixtures from Wang et al. (Combust.Flame. 2021). Generally, none of the selected mechanisms can precisely predict the measured laminar burning velocities at all conditions. Aiming to develop a simplified and reliable mechanism for ammonia/methanol mixtures, the constructed mechanism utilized NUI Galway mechanism (Combust.Flame. 2016) as methanol sub-mechanism and the Otomo mechanism (Int. J. Hydrogen. Energy. 2018) as ammonia sub-mechanism was optimized and reduced. The reduced mechanism entitled ‘DNO-NH3’, can accurately reproduce the measured laminar burning velocities of ammonia/methanol mixtures under all conditions. A reaction path analysis of the ammonia/methanol mixtures based on the DNO-NH3 mechanism shows that methanol is not directly involved in ammonia oxidation, instead, the produced methyl radicals from methanol oxidization contribute to the dehydrogenation of ammonia. Besides, NOx emission analysis demonstrates that 60% methanol addition results in the highest NOx emissions. The most important reactions dominating the NOx consumption and production are identified in this study.  相似文献   
57.
《Ceramics International》2022,48(8):10733-10740
Multivalent ion-conducting ceramics are required for the manufacture of high-safety, high-capacity rechargeable batteries. However, the low ionic conductivity of solid electrolytes and discrepancies in the thermal expansion between the battery components limit their widespread application. Furthermore, anisotropic thermal expansion in crystals during battery manufacturing and the charge-discharge cycles causes the formation of microcracks, which degrade the battery performance. The physical properties of ceramic materials with anisotropic crystal structures can be modified by varying the crystallographic orientation of their grains. In this study, a co-precipitation approach was used to synthesize an Mg2+-conducting (Mg0.1Hf0.9)4/3.8Nb(PO4)3 solid electrolyte, and the grain orientation in the bulk sample was controlled using strong magnetic fields during the slip casting process. The results showed that inducing an orientation along the c-axis enhanced the apparent ionic conductivity of the bulk sample. It was also observed that (Mg0.1Hf0.9)4/3.8Nb(PO4)3 crystal has a negative volumetric thermal expansion despite a positive linear thermal expansion along its c-axis. By adjusting the c-axis orientation of the grains, (Mg0.1Hf0.9)4/3.8Nb(PO4)3 electrolytes with negative or positive linear thermal expansion coefficient have been produced. The findings of this study suggest that solid-electrolytes with negative, positive, or zero linear thermal expansion can be produced to create more compatible and higher-performance solid-state devices.  相似文献   
58.
In this study, blends of the bio-based poly(limonene carbonate) (PLimC) with different commodity polymers are investigated in order to explore the potential of PLimC toward generating more sustainable polymer materials by reducing the amount of petro- or food-based polymers. PLimC is employed as minority component in the blends. Next to the morphology and thermal properties of the blends the impact of PLimC on the mechanical properties of the matrix polymers is studied. The interplay of incompatibility and zero-shear melt viscosity contrast determines the blend morphology, leading for all blends to a dispersed droplet morphology for PLimC. Blends with polymers of similar structure to PLimC (i.e., aliphatic/aromatic polyester) show the best performance with respect to mechanical properties, whereas blends with polystyrene or poly(methyl methacrylate) are too brittle and polyamide 12 blends show very low elongations at break. In blends with Ecoflex (poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copoly(ether ester)) with poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase in E-modulus can be achieved, while keeping the elongation at break at reasonable high values of ≈200%, making these blends highly interesting for applications.  相似文献   
59.
《Ceramics International》2021,47(18):25574-25579
Vanadium dioxide (VO2) is known as a typical 3d-orbital transition metal oxide exhibiting the metal-to-insulator-transition (MIT) property near room temperature. However, their electronic applications have been challenged by the quality and uniformity of VO2 thin films. In this work, we demonstrate the high sensitivity in the valence charge of vanadium and the MIT properties of the VO2 thin films to the deposition temperature. This observation indicates the necessity to eliminate the inhomogeneity in the temperature distribution of substrate during the vacuum-deposition process of VO2. In addition, a high thermoelectric power factor (PF, e.g., exceeding 1 μWcm−1K−2) was achieved in the metallic phase of the VO2 thin films and this value is comparable to typical organic or oxide thermoelectric materials. We believe this high PF enriches the potential functionality in thermoelectric energy conversions beyond the existing electronic applications of the current vacuum-grown VO2 thin films.  相似文献   
60.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号