首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104564篇
  免费   9135篇
  国内免费   7063篇
电工技术   3642篇
技术理论   2篇
综合类   6368篇
化学工业   34619篇
金属工艺   9572篇
机械仪表   2726篇
建筑科学   2161篇
矿业工程   1618篇
能源动力   4410篇
轻工业   7163篇
水利工程   831篇
石油天然气   4376篇
武器工业   603篇
无线电   10079篇
一般工业技术   15488篇
冶金工业   4671篇
原子能技术   1313篇
自动化技术   11120篇
  2024年   342篇
  2023年   1938篇
  2022年   3656篇
  2021年   4107篇
  2020年   3100篇
  2019年   2914篇
  2018年   2675篇
  2017年   3216篇
  2016年   3496篇
  2015年   3431篇
  2014年   4896篇
  2013年   5820篇
  2012年   6635篇
  2011年   8469篇
  2010年   6535篇
  2009年   7558篇
  2008年   6513篇
  2007年   7532篇
  2006年   6802篇
  2005年   5356篇
  2004年   4505篇
  2003年   3836篇
  2002年   3121篇
  2001年   2465篇
  2000年   2204篇
  1999年   1727篇
  1998年   1380篇
  1997年   1071篇
  1996年   1007篇
  1995年   855篇
  1994年   803篇
  1993年   596篇
  1992年   466篇
  1991年   373篇
  1990年   322篇
  1989年   243篇
  1988年   154篇
  1987年   106篇
  1986年   101篇
  1985年   76篇
  1984年   59篇
  1983年   34篇
  1982年   52篇
  1981年   49篇
  1980年   39篇
  1979年   29篇
  1978年   13篇
  1977年   15篇
  1975年   14篇
  1951年   22篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   
42.
通过制备不同晶相结构〔单斜相(m-ZrO_2)、四方相(t-ZrO_2)和无定型(a-ZrO_2)〕ZrO_2载体,再通过沉积沉淀法制得Cu/m-ZrO_2、Cu/t-ZrO_2和Cu/a-ZrO_2催化剂,分别用于催化二乙醇胺脱氢合成亚氨基二乙酸反应。采用XRD、氮气物理吸附脱附、XPS、H_2-TPR、CO_2-TPD对催化剂的结构进行了表征。结果表明,Cu/m-ZrO_2催化剂界面更加有利于Cu~+/Cu~0稳定存在,具有更多的碱性位点,且抗氧化性较好。在二乙醇胺脱氢反应中,Cu/m-ZrO_2催化剂性能最好,反应时间为2.5 h,亚氨基二乙酸收率为97.64%。  相似文献   
43.
《工程(英文)》2020,6(10):1192-1198
There is currently an outbreak of respiratory disease caused by a novel coronavirus. The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes has been named coronavirus disease 2019 (COVID-19). More than 16% of patients developed acute respiratory distress syndrome, and the fatality ratio was 1%–2%. No specific treatment has been reported. Herein, we examined the effects of favipiravir (FPV) versus lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. Patients with laboratory-confirmed COVID-19 who received oral FPV (Day 1: 1600 mg twice daily; Days 2–14: 600 mg twice daily) plus interferon (IFN)-α by aerosol inhalation (5 million international unit (IU) twice daily) were included in the FPV arm of this study, whereas patients who were treated with LPV/RTV (Days 1–14: 400 mg/100 mg twice daily) plus IFN-α by aerosol inhalation (5 million IU twice daily) were included in the control arm. Changes in chest computed tomography (CT), viral clearance, and drug safety were compared between the two groups. For the 35 patients enrolled in the FPV arm and the 45 patients in the control arm, all baseline characteristics were comparable between the two arms. A shorter viral clearance median time was found for the FPV arm versus the control arm (4 d (interquartile range (IQR): 2.5–9) versus 11 d (IQR: 8–13), P < 0.001). The FPV arm also showed significant improvement in chest CT compared with the control arm, with an improvement rate of 91.43% versus 62.22% (P = 0.004). After adjustment for potential confounders, the FPV arm also showed a significantly higher improvement rate in chest CT. Multivariable Cox regression showed that FPV was independently associated with faster viral clearance. In addition, fewer adverse events were found in the FPV arm than in the control arm. In this open-label before-after controlled study, FPV showed better therapeutic responses on COVID-19 in terms of disease progression and viral clearance. These preliminary clinical results provide useful information of treatments for SARS-CoV-2 infection.  相似文献   
44.
Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.  相似文献   
45.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
46.
The effect of Li2O on the crystallization properties of CaO-Al2O3-SiO2-Li2O-Ce2O3 slags was investigated. With increasing the Li2O content, LiAlO2 and CaCeAlO4 were the main crystalline phases. LiAlO2 formed for the charge compensating of Li+ ions to [AlO45?]-tetrahedrons, and CaCeAlO4 formed as a result of the charge balance of Ce3+ ions, Ca2+ ions, and [AlO69?]-octahedrons. Increasing the content of Li2O to 10%, the crystallization temperature was the highest, and the incubation time was the shortest. The crystallization ability was strong due to the three factors of strengthening the interaction between ions and ion groups, decreasing the polymerization degree, and increasing the melting temperature. Further increasing the content of Li2O, the crystallization performance was obviously suppressed, because the melting temperature and the force between the cations and the anion groups decreased.  相似文献   
47.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
48.
The performance of surface ionic conduction single chamber fuel cell (SIC‐SCFC) prepared by the sol gel method was studied on electric characteristics due to the differences of the operating temperature and humidity, the electrode distance and electrolyte film depth, and multiple cells with the series and parallel connections. The SIC–SCFC was arranged the both anode of Pt and cathode of Au on the boehmite electrolyte. The open circuit voltage (OCV) of single cell achieved a maximum of 530mV in the dry gas mixtures of O2/H2=50% in room temperature operation, and but it became decrease as over 60%. The OCV was maintained the constant value between operating temperatures of 30°C to 80°C, and but it was decreased sharply at over 90°C because a humidity on the cell became lower as increasing operating temperature. Then, the cell property was improved to 120°C by adding to the humidity of 70% using a humidifier. The electrode distance and the electrolyte film depth of SIC‐SCFC found to be contributed to the reductions of the cell resistance and the surface roughness on the electrode, respectively. Moreover, the power property of SIC‐SCFC was significantly improved by cell stacks comprised of the series or parallel connection of a cell.  相似文献   
49.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   
50.
Cancer remains an intractable medical problem. Rapid diagnosis and identification of cancer are critical to differentiate it from nonmalignant diseases. High-throughput biofluid metabolic analysis has potential for cancer diagnosis. Nevertheless, the present metabolite analysis method does not meet the demand for high-throughput screening of diseases. Herein, a high-throughput, cost-effective, and noninvasive urine metabolic profiling method based on TiO2/MXene-assisted laser desorption/ionization mass spectrometry (LDI-MS) is presented for the efficient screening of bladder cancer (BC) and nonmalignant urinary disease. Combined with machine learning, TiO2/MXene-assisted LDI-MS enables high diagnostic accuracy (96.8%) for the classification of patient groups (including 47 BC and 46 ureteral calculus (UC) patients) from healthy controls (113 cases). In addition, BC patients can also be identified from noncancerous UC individuals with an accuracy of 88.3% in the independent test cohort. Furthermore, metabolite variations between BC and UC individuals are investigated based on relative quantification, and related pathways are also discussed. These results suggest that this method, based on urine metabolic patterns, provides a potential tool for rapidly distinguishing urinary diseases and it may pave the way for precision medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号