全文获取类型
收费全文 | 3861篇 |
免费 | 366篇 |
国内免费 | 35篇 |
专业分类
电工技术 | 20篇 |
综合类 | 72篇 |
化学工业 | 2785篇 |
金属工艺 | 74篇 |
机械仪表 | 24篇 |
建筑科学 | 6篇 |
矿业工程 | 17篇 |
能源动力 | 53篇 |
轻工业 | 47篇 |
石油天然气 | 27篇 |
武器工业 | 4篇 |
无线电 | 227篇 |
一般工业技术 | 872篇 |
冶金工业 | 20篇 |
原子能技术 | 3篇 |
自动化技术 | 11篇 |
出版年
2024年 | 20篇 |
2023年 | 79篇 |
2022年 | 52篇 |
2021年 | 122篇 |
2020年 | 150篇 |
2019年 | 150篇 |
2018年 | 157篇 |
2017年 | 154篇 |
2016年 | 136篇 |
2015年 | 122篇 |
2014年 | 171篇 |
2013年 | 276篇 |
2012年 | 317篇 |
2011年 | 314篇 |
2010年 | 276篇 |
2009年 | 277篇 |
2008年 | 236篇 |
2007年 | 227篇 |
2006年 | 283篇 |
2005年 | 208篇 |
2004年 | 204篇 |
2003年 | 127篇 |
2002年 | 89篇 |
2001年 | 32篇 |
2000年 | 28篇 |
1999年 | 21篇 |
1998年 | 7篇 |
1997年 | 9篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有4262条查询结果,搜索用时 0 毫秒
51.
Organic-inorganic composite materials have demonstrated many potential applications in environmental field. This paper presented a facile preparation method for γ-Fe2O3/PMMA/S-TiO2 nanocomposite with core-shell structure and its application in degradation of phenanthrene under visible light irradiation. Firstly, γ-Fe2O3/PMMA nanoparticles were synthesized by the modified-suspension-polymerization method. Then γ-Fe2O3/PMMA/S-TiO2 core-shell nanocomposites were prepared by adding as-synthesized γ-Fe2O3/PMMA nanoparticles into the sol solution formed by sol-gel method using tetrabutyltitanate as Ti source and thiourea as sulfur source. The characterization result of the obtained products by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy indicated that the layer of sulfur doped titania was successfully coated onto the surface of γ-Fe2O3/PMMA nanoparticles. Thermogravimetry (TG) analysis presented that the layer of sulfur doped TiO2 could efficiently reduce the decomposition of polymethylmethacrylate (PMMA) even at higher temperature up to 500 °C. UV–vis diffuse reflectance spectroscopy showed that γ-Fe2O3/PMMA/S-TiO2 nanocomposite clearly exhibits the red-shift of the absorption edge compared with γ-Fe2O3/PMMA/TiO2. The photocatalytic activity evaluation showed that the γ-Fe2O3/PMMA/S-TiO2 nanocomposite exhibited the best photocatalytic activity for degradation of phenanthrene under the conditions of 0.8 mol% of sulfur doping, calcination temperature at 300 °C and the addition concentration of 1.0 g/L. Moreover, the nanocomposites have good recovery ability by the recovery experiment. 相似文献
52.
53.
Flexible nanocomposites comprising of polymer and high‐dielectric‐constant (high‐k) ceramic nanoparticles are becoming increasingly attractive for dielectric and energy storage applications in modern electronic and electric industry. However, a huge challenge still remains. Namely, the increase of dielectric constant usually at the cost of significant decrease of breakdown strength of the nanocomposites because of the electric field distortion and concentration induced by the high‐k filler. To address this long‐standing problem, by using nano‐Ag decorated core–shell polydopamine (PDA) coated BaTiO3 (BT) hybrid nanoparticles, a new strategy is developed to prepare high‐k polymer nanocomposites with high breakdown strength. The strawberry‐like BT‐PDA‐Ag based ferroelectric polymer [i.e., poly(vinylideneflyoride‐co‐hexafluroro propylene), P(VDF‐HFP)] nanocomposites exhibit greatly enhanced energy density and significantly suppressed dielectric loss as well as leakage current density in comparison with the nanocomposites with the core–shell structured BT‐PDA. Coulomb‐blockade effect of super‐small nano‐Ag is used to explain the observed performance enhancement of the nanocomposites. The simplicity and scalability of the described approach provide a promising route to polymer nanocomposites for dielectric and energy storage applications. 相似文献
54.
以正硅酸乙酯和硝酸镍为原料,利用溶胶-凝胶法制备了纳米NiO-SiO2复合体,再通过氢气还原得到Ni-SiO2纳米复合材料。利用X射线衍射(XRD)确定了样品的相组成,利用透射电子显微镜(TEM)观察了样品的微观结构,利用振动样品磁强计测定了样品的磁性能。研究了成分和焙烧温度对纳米复合颗粒微观结构和性能的影响。研究发现,所形成的纳米颗粒是以Ni为核心,外面包裹着非晶态SiO2层的核壳结构。随着硅含量的增加,包裹层变厚,随着焙烧温度升高颗粒直径增大。讨论了制备条件和SiO2含量对材料的微观形貌和磁学性能的影响。 相似文献
55.
Mingxuan Lu Prabhakar V. Gulgunje Pedro J. Arias-Monje Jeffrey Luo Jyotsna Ramachandran Yudhisthira Sahoo Sandip Agarwal Satish Kumar 《Polymer Engineering and Science》2020,60(9):2143-2151
Bi-component, polyacrylonitrile (PAN)/carbon nanotube (CNT) fibers were processed, at different core-sheath area ratios, by gel spinning. A percolated CNT network at 10 wt% CNT in the sheath enhanced electrical conductivity as compared to the neat PAN fiber, while PAN polymer in the core contributed to the good mechanical properties. Fibers with relatively thin sheath allowed overall CNT loading as low as 3.7 wt% to be made with good electrical conductivity, and PAN stabilization by Joule heating was demonstrated. Such fibers with combined good mechanical properties and electrical conductivity can also potentially be used for electrical heating of fabrics, for making smart textiles, and for electromagnetic interference shielding. 相似文献
56.
Nanocomposites of chitosan and nanoclays (MMT‐Na+ and Cloisite 30B) were prepared by solvent casting. The structural properties, thermal behaviors, and mechanical properties were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy, differential scanning calorimetry, thermogravimetry analyses, and an Instron universal testing machine. XRD and TEM results indicated that an exfoliated structure was formed with addition of small amounts of MMT‐Na+ to the chitosan matrix. Intercalation along with some exfoliation occurred with up to 5 wt % MMT‐Na+. Micro‐scale composite (tactoids) formed when Cloisite 30B was added to the chitosan matrix. Surface roughness increased with addition of a small amount of clay. Tensile strength of a chitosan film was enhanced and elongation‐at‐break decreased with addition of clay into the chitosan matrix. Melt behavior and thermal stability did not change significantly with addition of clays. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1684–1691, 2006 相似文献
57.
T. Boronat D. Garcia‐Sanoguera J. Pascual F. Peris L. Sanchez‐Nacher 《应用聚合物科学杂志》2012,126(3):1044-1052
In this investigation, the characteristics and the rheological properties of two different nanocomposite systems were investigated. These systems consisted of a dispersion of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in a polypropylene (PP) matrix. The mixing process was carried out by melt compounding with a twin‐screw corotating extruder with different reinforcement amounts (0.2–20 wt %) from concentrated masterbatches (20 wt %) of PP/CNT and PP/CNF. The results show a remarkable increase in the viscosity for both blends as the reinforcement amount was increased. It was important to evaluate the rheological behavior to understand the effect of the nanocarbon particles on the internal structures and their processing properties of the obtained composites. CNFs were a more viable reinforcement from a processability point of view because the obtained viscosities of the PP/CNF blends were more manageable. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
58.
59.
制备了不同硬段含量的聚氨酯(PU)及其PU/有机蒙脱土(OMMT)纳米复合材料。研究结果表明,随着PU分子链中硬段含量的增加,PU分子链的刚性提高,进入硅酸盐片层间的位阻增大,使插层变得困难,从而导致进入该硅酸盐片层间的PU分子链减少。OMMT对PU有增强增韧作用,但随着PU分子链中的硬段含量增加,OMMT的增强效果下降。PU及其PU/OMMT纳米复合材料的热稳定性均随着PU分子链中的硬段含量增加而下降。 相似文献
60.
Eranezhuth Wasan Awin Timon E. Günther Rameshwori Loukrakpam Stefan Schafföner Christina Roth Günter Motz 《International Journal of Applied Ceramic Technology》2023,20(1):59-69
The development of efficient and durable catalysts is critical for the commercialization of fuel cells, as the catalysts’ durability and reactivity dictate their ultimate lifetime and activity. In this work, amorphous silicon-based ceramics (Si–C–N and Si–Al–C–N) and TiN@Si–Al–C–N nanocomposites were developed using a precursor derived ceramics approach. In TiN@Si–Al–C–N nanocomposites, TiN nanocrystals (with sizes in the range of 5–12 nm) were effectively anchored on an amorphous Si–Al–C–N support. The nanocomposites were found to be mesoporous in nature and exhibited a surface area as high as 132 m2/g. The average pore size of the nanocomposites was found to increase with an increase in the pyrolysis temperature, and a subsequent graphitization of free carbon was observed as revealed from the Raman spectra. The ceramics were investigated for electrocatalytic activity toward the oxygen reduction reaction using the rotating disk electrode method. The TiN@Si–Al–C–N nanocomposites showed an onset potential of 0.7 V versus reversible hydrogen electrode for oxygen reduction, which seems to indicate a 4-electron pathway at the pyrolysis temperature of 1000°C in contrast to a 2-electron pathway exhibited by the nanocomposites pyrolyzed at 750°C via the Koutecky–Levich plot. 相似文献