首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123233篇
  免费   11204篇
  国内免费   7021篇
电工技术   8243篇
技术理论   2篇
综合类   8250篇
化学工业   29926篇
金属工艺   9179篇
机械仪表   8803篇
建筑科学   5622篇
矿业工程   1846篇
能源动力   3877篇
轻工业   7276篇
水利工程   965篇
石油天然气   4635篇
武器工业   1048篇
无线电   12628篇
一般工业技术   18347篇
冶金工业   3159篇
原子能技术   1231篇
自动化技术   16421篇
  2024年   413篇
  2023年   1695篇
  2022年   2744篇
  2021年   3543篇
  2020年   3166篇
  2019年   3151篇
  2018年   3052篇
  2017年   3789篇
  2016年   4267篇
  2015年   4697篇
  2014年   6107篇
  2013年   7026篇
  2012年   7250篇
  2011年   8448篇
  2010年   6972篇
  2009年   7918篇
  2008年   7472篇
  2007年   8285篇
  2006年   7995篇
  2005年   6569篇
  2004年   5823篇
  2003年   5521篇
  2002年   4599篇
  2001年   3646篇
  2000年   3257篇
  1999年   2604篇
  1998年   1942篇
  1997年   1523篇
  1996年   1404篇
  1995年   1355篇
  1994年   1185篇
  1993年   973篇
  1992年   759篇
  1991年   502篇
  1990年   378篇
  1989年   355篇
  1988年   209篇
  1987年   139篇
  1986年   130篇
  1985年   99篇
  1984年   93篇
  1983年   63篇
  1982年   57篇
  1981年   58篇
  1980年   33篇
  1979年   25篇
  1978年   24篇
  1977年   21篇
  1976年   27篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
MgAl2-2xMn2xO4 (MAMO) with x = 0-0.12 was synthesized in a single-phase form by solid-state reaction. XRD analysis showed that the samples had the cubic center structure of the Fd-3 m space group. Electrical properties of the samples were studied over the temperature range of 300 K∼1073 K. The results showed that the DC conductivity (σDC) increased from 10−11S/cm at 300 K (MAMO, x = 0) to 10-3S/cm at 1073 K (MAMO, x = 0.12). The equivalent circuit of the complex impedance spectra suggested that the relaxation of charge carriers was of non-Debye type. The conduction was mainly caused by grain boundaries and the capacitance was mainly attributed to polarization. The complex permittivity values (ε’ and ε’’) were increased by two orders of magnitude with the increase in Mn content and temperature over the measured frequency range (1 Hz-1 MHz). Therefore, doping with Mn could be applied to modify the electrical properties of MAMO at high temperature.  相似文献   
72.
宫明明 《中国酿造》2021,40(12):175
该研究建立了一种亲水交互作用色谱-串联质谱(HILIC-MS/MS)法测定动物源运动食品中潮霉素B、新霉素、安普霉素3种氨基糖苷类抗生素残留量的方法。结果表明,样品经Sielc Obelisc R柱分离,采用0.1%甲酸水溶液-乙腈梯度洗脱,可以实现3种目标物组分的分离。在此条件下,3种氨基糖苷类抗生素在5~500 ng/mL的质量浓度范围内线性关系良好,相关系数R2为0.999 5~0.999 9,检出限均为15 μg/kg,定量限均为50 μg/kg,保留时间的日间和日内相对标准偏差(RSD)分别为3.5%~7.9%和3.5%~4.1%,峰面积的日间和日内RSD分别为3.6%~7.4%和3.2%~3.9%,加标回收率为85.7%~93.6%,回收率试验结果的RSD为3.1%~5.2%。该方法可以满足动物源运动食品中3种氨基糖苷类抗生素的检测需求。  相似文献   
73.
This work intends to develop an online experimental system for screening of deoxynivalenol (DON) contamination in whole wheat meals by visible/near-infrared (Vis/NIR) spectroscopy and computer vision coupling technology. Spectral and image information of samples with various DON levels was collected at speed of 0.15 m s−1 on a conveyor belt. The two-type data were then integrated and subjected to chemometric analysis. Discriminant analysis showed that samples could be classified by setting 1000 μg kg−1 as the cut-off value. The best correct classified rate obtained in prediction was 93.55% based on fusion of spectral and image features, with reduced prediction uncertainty as compared to single feature. However, quantification of DON by quantitative analysis was not successful due to poor model performance. These results indicate that, although not accurate enough to provide conclusive result, this coupling technology could be adopted for rapid screening of DON contamination in cereals and feeds during processing.  相似文献   
74.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
75.
性能效率是APP软件的重要质量属性,但目前缺乏APP软件性能效率的通用模型。分析了APP软件的性能特征,基于ISO/IEC 25010标准提出了APP软件的性能效率模型,定义了APP软件性能效率的子特性和度量指标。基于提出的APP软件性能效率模型,通过实验对APP软件的性能效率进行了度量及相关分析。  相似文献   
76.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
77.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
78.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   
79.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
80.
Cancer remains an intractable medical problem. Rapid diagnosis and identification of cancer are critical to differentiate it from nonmalignant diseases. High-throughput biofluid metabolic analysis has potential for cancer diagnosis. Nevertheless, the present metabolite analysis method does not meet the demand for high-throughput screening of diseases. Herein, a high-throughput, cost-effective, and noninvasive urine metabolic profiling method based on TiO2/MXene-assisted laser desorption/ionization mass spectrometry (LDI-MS) is presented for the efficient screening of bladder cancer (BC) and nonmalignant urinary disease. Combined with machine learning, TiO2/MXene-assisted LDI-MS enables high diagnostic accuracy (96.8%) for the classification of patient groups (including 47 BC and 46 ureteral calculus (UC) patients) from healthy controls (113 cases). In addition, BC patients can also be identified from noncancerous UC individuals with an accuracy of 88.3% in the independent test cohort. Furthermore, metabolite variations between BC and UC individuals are investigated based on relative quantification, and related pathways are also discussed. These results suggest that this method, based on urine metabolic patterns, provides a potential tool for rapidly distinguishing urinary diseases and it may pave the way for precision medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号