首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12793篇
  免费   2055篇
  国内免费   413篇
电工技术   299篇
综合类   371篇
化学工业   4879篇
金属工艺   856篇
机械仪表   277篇
建筑科学   101篇
矿业工程   117篇
能源动力   762篇
轻工业   715篇
水利工程   13篇
石油天然气   166篇
武器工业   14篇
无线电   1531篇
一般工业技术   4638篇
冶金工业   272篇
原子能技术   61篇
自动化技术   189篇
  2024年   81篇
  2023年   515篇
  2022年   540篇
  2021年   812篇
  2020年   805篇
  2019年   728篇
  2018年   780篇
  2017年   809篇
  2016年   778篇
  2015年   777篇
  2014年   947篇
  2013年   1086篇
  2012年   861篇
  2011年   1015篇
  2010年   682篇
  2009年   785篇
  2008年   672篇
  2007年   559篇
  2006年   493篇
  2005年   356篇
  2004年   197篇
  2003年   208篇
  2002年   172篇
  2001年   160篇
  2000年   135篇
  1999年   83篇
  1998年   48篇
  1997年   49篇
  1996年   34篇
  1995年   14篇
  1994年   20篇
  1993年   12篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
An adsorption process of magnetite nanoparticles functionalized with aminated chitosan (Fe3O4-AChit) showing application potential in nanomedicine into cell membrane models was studied. The cell membrane models were formed using a Langmuir technique from three selected phospholipids with different polar head-groups as well as length and carbon saturation of alkyl chains. The research presented in this work reveals the existence of membrane model composition-dependent regulation of phospholipid-nanoparticle interactions. The influence of the positively charged Fe3O4-AChit nanoparticles on a Langmuir film stability, phase state, and textures is much greater in the case of these formed by negatively charged 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) than those created by zwitterionic 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC). The adsorption kinetics recorded during penetration experiments show that this effect is caused by the strongest adsorption of the investigated nanoparticles into the DPPG monolayer driven very likely by the electrostatic attraction. The differences in the adsorption strength of the Fe3O4-AChit nanoparticles into the Langmuir films formed by the phosphatidylcholines were also observed. The nanoparticles adsorbed more easily into more loosely packed POPC monolayer.  相似文献   
22.
By the NSS test and the test in SO2 gas atmosphere and detecting the φcorr-t curves, Rp-t curves and the cyclic voltammogram curves, the corrosion resistance of the electroplated Zn-Co alloy coating was studied. The corrosion resistance of the electroplated Zn-Co alloy coating is three times higher than that of the galvanized coating. Because the corrosion resistance of the Zn-Co alloy coating is especially remarkable in SO2 gas atmosphere, it is particularly fit to be used as a protective coating in industrial atmosphere. The reason why the Zn-Co alloy coating has such a high corrosion resistance is that its corrosive product has a comparatively great role in depressing the corrosive process.  相似文献   
23.
研究了在250℃、不同挤压比下挤压变形对Mg95 Zn4.3 Y0.7合金组织及性能的影响。结果表明,Mg95 Zn4.3 Y0.7经过挤压变形后,合金中晶界处的共晶相破碎,弥散分布至晶粒内部,并且晶粒显著细化。同时,随着挤压比的增大,晶粒细化程度增加,合金的力学性能单调增加。当挤压比为16时,合金晶粒尺寸为5-8μm,抗拉强度为288.9MPa,显微硬度HV值为117.8。  相似文献   
24.
Negatively charged fluorescent carbon dots (CDs, Em=608 nm) were hydrothermally prepared from thiophene phenylpropionic acid polymers and then successfully loaded with the positively charged anticancer cargo coptisine, which suffers from poor bioavailability. The formed CD-coptisine complexes were thoroughly characterized by particle size, morphology, drug loading efficiency, drug release, cellular uptake and cellular toxicity in vitro and antitumor activities in vivo. In this nano-carrier system, red emissive CDs possess multiple advantages as follows: 1) high drug loading efficiency (>96 %); 2) sustained drug release; 3) enhanced drug efficacy towards cancer cells; 4) EPR effect; 5) drug release tracing with near-infrared imaging. These properties indicated that red emissive CDs prepared from polymers could be used as a novel drug delivery system with integrated therapeutic and imaging functions in cancer therapy, which are expected to have great potential in future clinical applications.  相似文献   
25.
The size fractionation of magnetic nanoparticles is a technical problem, which until today can only be solved with great effort. Nevertheless, there is an important demand for nanoparticles with sharp size distributions, for example for medical technology or sensor technology. Using magnetic chromatography, we show a promising method for fractionation of magnetic nanoparticles with respect to their size and/or magnetic properties. This was achieved by passing magnetic nanoparticles through a packed bed of fine steel spheres with which they interact magnetically because single domain ferro-/ferrimagnetic nanoparticles show a spontaneous magnetization. Since the strength of this interaction is related to particle size, the principle is suitable for size fractionation. This concept was transferred into a continuous process in this work using a so-called simulated moving bed chromatography. Applying a suspension of magnetic nanoparticles within a size range from 20 to 120 nm, the process showed a separation sharpness of up to 0.52 with recovery rates of 100%. The continuous feed stream of magnetic nanoparticles could be fractionated with a space-time-yield of up to 5 mg/(L∙min). Due to the easy scalability of continuous chromatography, the process is a promising approach for the efficient fractionation of industrially relevant amounts of magnetic nanoparticles.  相似文献   
26.
Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.  相似文献   
27.
Actuators made of soft matter are needed for a variety of fields ranging from biomedical devices to soft robotics to microelectromechanical systems. While there are a variety of excellent methods of soft actuation known, the field is still an area of intense research activity as new niches and needs emerge with new technology development. Here, a soft actuation system is described, based on a core-multi-shell particle, which moves via photothermal expansion. The system consists of a novel polystyrene-based thermally expandable microsphere, with a secondary shell of a silicate-silane graft copolymer, to which gold nanoparticles are covalently linked. The gold nanoparticles act as photothermal nano-transducers, converting light energy into the thermal energy necessary for microsphere expansion, which in turn results in material movement. Actuation is shown in isolated particles in thermal and photothermal regimes using metal ceramic heaters or 520 nm laser illumination, respectively. Macroscale actuation is demonstrated by making a composite material of particles suspended in the transparent elastomer polydimethylsiloxane. The sample demonstrates an inchworm-like movement by starting from an arched geometry. Overall, this work describes a new particle-based actuation method for soft materials, and demonstrates its utility in driving the movement of a composite elastomer.  相似文献   
28.
Cellulose nanocrystals (CNCs) incorporated with silver nanoparticles (AgNPs) photonic films have drawn considerable attention due to their plasmonic chiroptical activity. However, the exploitation of some fundamental properties for practical use such as the affinity analysis of metal nanoparticles attached to the surface of photonic films according to the solvent compatibility and antibacterial activity under physical conditions has yet not been studied. Hence, a facile process of in situ deposition of AgNPs into the chiral structure of CNC films is proposed. CNC photonic films, cross-linked by glutaraldehyde are prepared. This interaction generated the solvents-stable photonic film with a considerable amount of unreacted aldehyde functional groups that facilitates the reduction of Ag salt to AgNPs. The formed AgNPs in the photonic films show excellent stability over immersion in various polar and non-polar solvents. The post-solvent treated photonic films display excellent contact-based antibacterial behavior against gram-negative Escherichia coli.  相似文献   
29.
To overcome high toxicity, low bioavailability and poor water solubility of chemotherapeutics, a variety of drug carriers have been designed. However, most carriers are severely limited by low drug loading capacity and adverse side effects. Here, a new type of metal-drug nanoparticles (MDNs) was designed and synthesized. The MDNs self-assembled with Fe(III) ions and drug molecules through coordination, resulting in nanoparticles with high drug loading. To assist systemic delivery and prolong circulation time, the obtained MDNs were camouflaged with red blood cell (RBCs) membranes (RBCs@Fe-DOX MDNs) to improve their stability and dispersity. The RBCs@Fe-DOX MDNs presented pH-responsive release functionalities, resulting in drug release accelerated in acidic tumor microenvironments. The outstanding in vitro and in vivo antitumor therapeutic outcome was realized by RBCs@Fe-DOX MDNs. This study provides an innovative design guideline for chemotherapy and demonstrates the great capacity of nanomaterials in anticancer treatments.  相似文献   
30.
The LaCo0.94Pt0.06O3 catalyst is reduced under 5% H2/Ar at different temperatures to get Pt/LaCoO3 with high catalytic activity for soot oxidation. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), O2-temperature programmed desorption (O2-TPD) and thermogravimetric analysis (TGA) were used to study the physicochemical properties of the catalyst. SEM and TEM results indicate that Pt nanoparticles (<10 nm) are grown homogeneously on the surface of the LaCoO3 matrix after in-situ reduction. XRD shows that the reduced catalyst has a high symmetrical structure. TGA results indicate that all reduced catalysts exhibit an excellent activity, especially the catalyst reduced at 350 °C (T10 = 338 °C, T50 = 393 °C, T90 = 427 °C). And perovskite is the primary active component. According to XPS study, the high symmetrical structure benefits the mobility of oxygen vacancy, and Pt nanoparticles induce the oxygen vacancy to move to its adjacent situation, resulting in more adsorbed oxygen on the surface of the reduced catalyst and increasing the activity. The possible reaction principle is also proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号