首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15268篇
  免费   2274篇
  国内免费   694篇
电工技术   226篇
综合类   493篇
化学工业   5754篇
金属工艺   685篇
机械仪表   289篇
建筑科学   162篇
矿业工程   57篇
能源动力   984篇
轻工业   601篇
水利工程   17篇
石油天然气   179篇
武器工业   28篇
无线电   2313篇
一般工业技术   5928篇
冶金工业   185篇
原子能技术   78篇
自动化技术   257篇
  2024年   65篇
  2023年   454篇
  2022年   580篇
  2021年   846篇
  2020年   820篇
  2019年   781篇
  2018年   863篇
  2017年   919篇
  2016年   909篇
  2015年   877篇
  2014年   1148篇
  2013年   1303篇
  2012年   1138篇
  2011年   1463篇
  2010年   952篇
  2009年   1073篇
  2008年   934篇
  2007年   795篇
  2006年   680篇
  2005年   456篇
  2004年   295篇
  2003年   233篇
  2002年   140篇
  2001年   103篇
  2000年   129篇
  1999年   68篇
  1998年   49篇
  1997年   36篇
  1996年   27篇
  1995年   19篇
  1994年   23篇
  1993年   17篇
  1992年   11篇
  1991年   13篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1976年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Our cost-effective approach for hybridizing methylammonium lead iodide and PbS nanoparticles at low temperature (≤100 °C) for photovoltaic devices is introduced. As employed into a perovskite based solar cell platform, effects of PbS on the device performance were investigated. Through experimental observations under simulated air-mass 1.5G illumination (irradiation intensity of 100 mWcm−2), the efficiency of a perovskite:PbS device is 11% higher than that of a pristine perovskite solar cell under the same fabrication conditions as a result of the broadened absorption range in the infrared region. The highest photovoltaic performance was observed at a PbS concentration of 2% with an open-circuit voltage, short-circuit current density, fill factor, and power-conversion efficiency of 0.557 V, 22.841 mA cm−2, 0.55, and 6.99%, respectively. Furthermore, PbS NPs could induce hydrophobic modification of the perovskite surface, leading to an improvement of the device stability in the air. Finally, the low-temperature and cost-effective fabrication process of the hybrid solar cells is a good premise for developing flexible/stretchable cells as well as future optoelectronic devices.  相似文献   
993.
Copper (Cu)-doped ZnO thin films were grown on unheated glass substrates at various doping concentrations of Cu (0, 5.1, 6.2 and 7.5 at%) by simultaneous RF and DC magnetron sputtering technique. The influence of Cu atomic concentration on structural, electrical and optical properties of ZnO films was discussed in detail. Elemental composition from EDAX analysis confirmed the presence of Cu as a doping material in ZnO host lattice. XRD patterns show that the films were polycrystalline in nature with (002) as a predominant reflection of ZnO exhibited hexagonal wurtzite structure toward c-axis. From AFM analysis, films displayed needle-like shaped grains throughout the substrate surface. The electrical resistivity was found to be increased with increase of Cu content from 0 to 7.5 at%. Films have shown an average optical transmittance about 80% in the visible region and decreased optical band gap values from 3.2 to 3.01 eV with increasing of Cu doping content from 0 to 7.5 at% respectively. Furthermore, remarkably enhanced photoluminescence (PL) properties have been observed with prominent violet emission band corresponding to 3.06 eV (405 nm) in the visible region through the increase of Cu doping content in ZnO host lattice.  相似文献   
994.
Modified Nafion membranes by self-assembling of palladium composite nanoparticles were successfully synthesized and used for the reduction of methanol crossover in Direct Methanol Fuel Cells (DMFC). The positively charged polydiallyldimethylammonium (PDDA) was used for stabilizing the palladium nanoparticles. Modified and unmodified membranes were tested in a DMFC at 30 °C and 50 °C. The performance of the DMFC using modified membranes with different composite nanoparticles (i.e., Pd/PDAA ratios) and self-assembling times was compared with that using an unmodified membrane. The modified Nafion membranes proved to reduce the methanol crossover in ca. 10% – 35%, depending on the self-assembling time, nanoparticles composition and test temperature. However, a decrease in the performance was observed mainly for the modified membrane with the higher PDDA content due to a decrease in the proton conductivity. On the other hand, the membrane modified with nanoparticles containing less PDDA and tested at 50 °C showed similar performance as the unmodified one. Additionally, the fuel cell efficiencies obtained for all the modified membranes at both temperatures were similar or higher than the unmodified one.  相似文献   
995.
Sir:

A Fortran IV computer program is used to calculate absorbance at varying wavelengths in a UV-visible rapid scanning spectrophotometer. Using the program eliminates the necessity of calibrating the absorbance axis in the usual manner using standard solutions or filters and plotting calibration curves, because the voltage output of the computer is automatically identical to the actual absorbance of a sample.  相似文献   
996.
Magnetic particle mediated transport in combination with nanomaterial based drug carrier has a great potential for targeted cancer therapy. In this study, doxorubicin encapsulation into the apoferritin and its conjugation with magnetic particles was investigated by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The quantification of encapsulated doxorubicin was performed by fluorescence spectroscopy and compared to CE-LIF. Moreover, the significant enhancement of the doxorubicin signal was observed by addition of methanol into the sample solution.  相似文献   
997.
A double-layer AgCl–WO3 structure was employed to produce photochemical hydrogen for doping of an AgCl film. Atomic photochemical hydrogen, detached under the action of light from hydrogen donor molecules, previously adsorbed on the WO3 surface, migrated through the WO3 film into the AgCl film, which provided doping of the AgCl surface and yielded hydrogen sensitization simultaneous to illumination and yielded the enhancement of photochromism in the AgCl films. The atomic hydrogen played the role of a reducing agent and triggered the formation of sensitization centers on the halide surface, which in turn facilitated the growth of silver clusters and colloids under the action of light. The double-layer AgCl–WO3 structure realizes the idea of two-stage catalysis: first the oxide surface catalyses hydrogen production under the action of light, then the photochemical hydrogen atoms act as catalysts during the photolysis of the halide.  相似文献   
998.
徐华腾 《电子科技》2011,24(7):148-151
采用磁控溅射方法,探索ZnO薄膜制备的最佳工艺。研究了氧氩比、基片温度,对晶粒质量的影响,以及表面电阻与溅射时间之间的关系,使薄膜具有高电阻率,并研究了激活前后光暗电流的关系,满足薄膜在紫外探测器领域的应用。  相似文献   
999.
An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.  相似文献   
1000.
ZnO nanoparticle–based multilayer nanocomposite films were fabricated on cationized woven cotton fabrics via layer-by-layer molecular self-assembly technique. For cationic surface charge, cotton fabrics were pretreated with 2,3-epoxypropyltrimethylammonium chloride (EP3MAC) by pad-batch method. XPS and SEM were used to examine the deposited nano-ZnO multilayer films on the cotton fabrics. The nano-ZnO films deposited on cotton fabrics exhibited excellent antimicrobial activity against Staphylococcus aureus bacteria. The results also showed that the coated fabrics with nano-ZnO multilayer films enhanced the protection of cotton fabrics from UV radiation. Physical tests (tensile strength of weft and warp yarns, air permeability and whiteness values) were performed on the fabrics before and after the treatment with ZnO nanoparticles to evaluate the effect of layer-by-layer (LbL) process on cotton fabrics properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号