首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69175篇
  免费   7856篇
  国内免费   2652篇
电工技术   1041篇
技术理论   1篇
综合类   2798篇
化学工业   25737篇
金属工艺   10091篇
机械仪表   1265篇
建筑科学   1770篇
矿业工程   947篇
能源动力   1338篇
轻工业   9726篇
水利工程   310篇
石油天然气   1084篇
武器工业   335篇
无线电   2659篇
一般工业技术   16299篇
冶金工业   3139篇
原子能技术   251篇
自动化技术   892篇
  2024年   496篇
  2023年   1696篇
  2022年   2378篇
  2021年   3162篇
  2020年   3044篇
  2019年   2558篇
  2018年   2875篇
  2017年   3226篇
  2016年   3251篇
  2015年   3348篇
  2014年   3933篇
  2013年   5044篇
  2012年   4400篇
  2011年   5450篇
  2010年   3662篇
  2009年   3971篇
  2008年   3289篇
  2007年   3578篇
  2006年   3413篇
  2005年   2666篇
  2004年   2609篇
  2003年   2226篇
  2002年   1814篇
  2001年   1236篇
  2000年   1126篇
  1999年   864篇
  1998年   770篇
  1997年   664篇
  1996年   497篇
  1995年   450篇
  1994年   325篇
  1993年   240篇
  1992年   245篇
  1991年   193篇
  1990年   240篇
  1989年   235篇
  1988年   82篇
  1987年   57篇
  1986年   59篇
  1985年   68篇
  1984年   67篇
  1983年   33篇
  1982年   55篇
  1981年   7篇
  1980年   35篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The vulcanization of natural rubber was studied with the sulfurating agents dipentamethylene thiuram tetrasulfide (DPTT) and tetramethylene thiuram disulfide (TMTD) in the presence of tetramethyl thiuram monosulfide (TMTM). This last accelerant affects the rate and efficiency of the vulcanization as well as the structures of crosslinks formed by the two sulphur donors. It may give rise to a polymerization between adjacent double bonds and generate a inhomogeneous crosslink distribution with an adverse effect on physical properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 491–499, 2002  相似文献   
992.
The linear and nonlinear shear rheological behaviors of poly(propylene) (PP)/clay (organophilic‐montmorillonite) nanocomposites (PP/org‐MMT) were investigated by an ARES rheometer. The materials were prepared by melt intercalation with maleic anhydride functionalized PP as a compatibilizer. The storage moduli (G′), loss moduli (G″), and dynamic viscosities of polymer/clay nanocomposites (PPCNs) increase monotonically with org‐MMT content. The presence of org‐MMT leads to pseudo‐solid‐like behaviors and slower relaxation behaviors of PPCN melts. For all samples, the dependence of G′ and G″ on ω shows nonterminal behaviors. At lower frequency, the steady shear viscosities of PPCNs increase with org‐MMT content. However, the PPCN melts show a greater shear thinning tendency than pure PP melt because of the preferential orientation of the MMT layers. Therefore, PPCNs have higher moduli but better processibility compared with pure PP.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2427–2434,2004  相似文献   
993.
Porous carbons with high surface area were successfully prepared from thermoplastic precursors, such as poly(vinyl alcohol) (PVA), hydroxyl propyl cellulose and poly(ethylene terephthalate), by the carbonization of a mixture with MgO at 900 °C in an inert atmosphere. After carbonization the MgO was dissolved out using a diluted sulfuric acid and the carbons formed were isolated. The mixing of the PVA carbon precursor with the MgO precursors (reagent grade MgO, magnesium acetate or citrate) was done either in powder form or in an aqueous solution. The BET surface area of the carbons obtained via solution mixing could reach a very high value, such as 2000 m2/g, without any activation process. The pore structure of the resultant carbons was found to depend strongly on the mixing method; the carbons prepared via solution mixing were rich in mesopores, but those produced via powder mixing were rich in micropores. The size of mesopores was found to be almost the same as that of the MgO particles, suggesting a way of controlling the mesopore size in the resultant carbons. Measurement of capacitance was carried out in 1 mol/L H2SO4 electrolyte. The porous carbon with a BET surface area of 1900 m2/g prepared at 900 °C through solution mixing of Mg acetate with PVA showed a fairly high EDLC capacitance, about 250 F/g with a current density of 20 mA/g and 210 F/g with 1000 mA/g. The rate performance was closely related to the mesoporous surface area.  相似文献   
994.
The dynamic mechanical relaxation of non-crystalline poly(aryl ether-ether-ketone) PEEK and the one irradiated with electron beam were studied. The three distinct γ, β, α′ relaxation maxima were observed in unirradiated PEEK from low to high temperature. It was revealed from the study on the irradiation effects that three different molecular processes are overlapped in γ relaxation peak, i.e., molecular motion of water bound to main chain (peak temperature; at ?100°C), local motion of main chain (at ?80°C), and local mode of the aligned and/or oriented moiety (at ?40°C). The β relaxation connected with the glass transition occurred at 150°C and it shifted to higher temperature by irradiation. The α′ relaxation which can be attributed to rearrangement of molecular chain due to crystallization was observed in unirradiated PEEK ~ 180°C and its magnitude decreased with the increase in irradiation dose. This effect indicates the formation of structures inhibiting crystallization such as crosslinking and/or short branching during irradiation. A new relaxation, β′, appeared in the temperature range of 40° to 100°C by irradiation and its magnitude increased with dose. This relaxation was attributed to rearrangement of molecular chain from loosened packing around chain ends, which were introduced into the non-crystalline region by chain scission under irradiation, to more rigid molecular packing, From these observations, we proposed that deterioration in mechanical properties of non-crystalline PEEK by high energy electron beam was brought about not only by chain scission but structural changes such as crosslinking and/or branching in the main chain.  相似文献   
995.
The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization on the dynamic mechanical properties of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends have been analyzed at different temperatures. The storage modulus of the blend decreases with an increase in the EVA content. The loss factor curve shows two peaks, corresponding to the transitions of HDPE and EVA, indicating the incompatibility of the blend system. Attempts have been made to correlate the observed viscoelastic properties of the blends with the blend morphology. Various composite models have been used to predict the dynamic mechanical data. The experimental values are close to those of the Halpin–Tsai model above 50 wt % EVA and close to those of the Coran model up to 50 wt % EVA in the blend. For the Takayanagi model, the theoretical value is in good agreement with the experimental value for a 70/30 HDPE/EVA blend. The area under the loss modulus/temperature curve (LA) has been analyzed with the integration method from the experimental curve and has been compared with that obtained from group contribution analysis. The LA values calculated with group contribution analysis are lower than those calculated with the integration method. The addition of a maleic‐modified polyethylene compatibilizer increases the storage modulus, loss modulus, and loss factor values of the system, and this is due to the finer dispersion of the EVA domains in the HDPE matrix upon compatibilization. For 70/30 and 50/50 blends, the addition of a maleic‐modified polyethylene compatibilizer shifts the relaxation temperature of both HDPE and EVA to a lower temperature, and this indicates increased interdiffusion of the two phases at the interface upon compatibilization. However, for a 30/70 HDPE/EVA blend, the addition of a compatibilizer does not change the relaxation temperature, and this may be due to the cocontinuous morphology of the blends. The dynamic vulcanization of the EVA phase with dicumyl peroxide results in an increase in both the storage and loss moduli of the blends. A significant increase in the relaxation temperature of EVA and a broadening of the relaxation peaks occur during dynamic vulcanization, and this indicates the increased interaction between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2083–2099, 2003  相似文献   
996.
Polyamide 6 (PA6) isotropic films and oriented cables were prepared by compression molding or by consecutive extrusion and cold‐drawing. These samples were isothermally annealed in the 120–200°C range and were then subjected to tensile tests at room temperature. Synchrotron wide‐angle X‐ray scattering (WAXS) and small‐angle X‐ray scattering (SAXS) patterns were obtained before and after mechanical failure. These data were related with the mechanical properties of the respective PA6 samples. The annealing of isotropic PA6 resulted in an increase in the Young's modulus (E) and yield stress (σy) values, which was attributed to the observed proportional reduction of the d‐spacings of the intersheet distances in both the α‐PA6 and γ‐PA6 polymorphs. Analysis of the WAXS and SAXS patterns of isotropic PA6 after break allowed the supposition of structural changes in the amorphous phase, with these being better pronounced with increasing annealing temperature; this made the samples less ductile. In oriented PA6 samples, annealing resulted in a drastic increase in the E and σy values accompanied by a phase transition from γ‐PA6 to α‐PA6 and a well‐pronounced reduction in the intersheet distances of both polymorphs. The stretching of the oriented samples led to an additional γ‐to‐α transition, whose extent was also related to structural changes in the amorphous phase. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2242–2252, 2007  相似文献   
997.
The transient hot-strip method has been used for determining thermal conductivity and thermal diffusivity of a refractory brick. The technique is based on recording the transient temperature increase of a 25-μm-thick, 8-mm-wide, and 70-mm-long iron strip clamped between two sample halves and heated with a constant direct current. The method is accurate to within 5% in the thermal conductivity and to within 10% in the thermal diffusivity in the temperature range 20° to 700°C.  相似文献   
998.
We have developed a method that would allow for the fabrication of carbon aerogel (CA) spheres. The inverse phase suspension polymerization of resorcinol and formaldehyde monomers with Na2CO3 as a catalyst followed by supercritical drying was explored. The effects of the chemical formulation and processing procedures and the conditions of the structures of organic and related carbon aerogels were studied. The experimental results indicated that it was easy to avoid the accumulation of polymerization heat during gelation, and easy to take out the products from the reaction container, through this fabrication method. Sol-gel microspheres with diameters ranging from about 30-1000μm could be obtained. After drying the sol-gel spheres under alcohol supercritical drying conditions, aerogel spheres with a bulk density of 0.8-1.0 g/cm3were prepared, and by subsequently pyrolyzing them, CA spheres with surface areas of 250-650 m2/g were obtained. The resultant CA spheres could be used as the electrode materials of supercapacitors. The specific capacitance of the CA spheres was as high as 215 F/g, and the equivalent series resistance at 48 Hz was about 1 Ω.  相似文献   
999.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of in‐reactor polyethylene/polypropylene alloys by polyethylene homopolymerization and subsequent homopolymerization of propylene in the gas phase. Different conditions in the ethylene homopolymerization stage, such as monomer pressure and polymerization temperature, were investigated, and their influences on the structure and properties of in‐reactor alloys were studied. Raising the polymerization temperature is the most effective way of speeding up polymerization and regulating the ethylene content of polyethylene (PE)/polypropylene (PP) alloys, but it will cause a greater increase in the PE‐b‐PP block copolymer fraction (named fraction D) than in the fraction of PP‐block‐PE in which the PP segments have low or medium isotacticity (named fraction A). Although changing ethylene monomer pressure could influence the ethylene content of PE/PP alloys slightly, it is an effective way of regulating the structural distribution. Reducing the monomer pressure will evidently increase fractions A and D. The mechanical properties of the alloys, including impact strength and flexural modulus, can be regulated in a broad range with changes in polymerization conditions. These properties are highly dependent on the amount, distribution, and chain structure of fractions A and D. The impact strength is affected by both fraction A and fraction D in a complicated way, whereas the flexural modulus is mainly determined by the amount of fraction A. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2136–2143, 2006  相似文献   
1000.
The goal of this work was to prepare exfoliated poly(lactic acid) (PLA)/layered‐silicate nanocomposites with maleic anhydride grafted poly(lactic acid) (PLA–MA) as a compatibilizer. Two different layered silicates were used in the study: bentonite and hectorite. The nanocomposites were prepared by the incorporation of each layered silicate (5 wt %) into PLA via solution casting. X‐ray diffraction of the prepared nanocomposites indicated exfoliation of the silicates. However, micrographs from transmission electron microscopy showed the presence of intercalated and partially exfoliated areas. Tensile testing showed improvements in both the tensile modulus and yield strength for all the prepared nanocomposites. The results from the dynamic mechanical thermal analysis showed an improvement in the storage modulus over the entire temperature range for both layered silicates together with a shift in the tan δ peak to higher temperatures. The effect of using PLA–MA differed between the two layered silicates because of a difference in the organic treatment. The bentonite layered silicate showed a more distinct improvement in exfoliation and an increase in the mechanical properties because of the addition of PLA–MA in comparison with the hectorite layered silicate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1852–1862, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号