首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2432篇
  免费   281篇
  国内免费   16篇
电工技术   3篇
综合类   42篇
化学工业   1059篇
金属工艺   12篇
机械仪表   8篇
建筑科学   19篇
矿业工程   2篇
能源动力   15篇
轻工业   1392篇
水利工程   3篇
石油天然气   11篇
无线电   31篇
一般工业技术   98篇
冶金工业   7篇
原子能技术   10篇
自动化技术   17篇
  2025年   7篇
  2024年   50篇
  2023年   56篇
  2022年   116篇
  2021年   156篇
  2020年   100篇
  2019年   137篇
  2018年   120篇
  2017年   113篇
  2016年   103篇
  2015年   97篇
  2014年   99篇
  2013年   122篇
  2012年   160篇
  2011年   132篇
  2010年   115篇
  2009年   140篇
  2008年   104篇
  2007年   126篇
  2006年   105篇
  2005年   106篇
  2004年   85篇
  2003年   77篇
  2002年   44篇
  2001年   21篇
  2000年   24篇
  1999年   25篇
  1998年   33篇
  1997年   16篇
  1996年   17篇
  1995年   13篇
  1994年   22篇
  1993年   18篇
  1992年   13篇
  1991年   12篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1980年   4篇
  1974年   2篇
排序方式: 共有2729条查询结果,搜索用时 15 毫秒
101.
The aim of this study was to investigate the phytotoxic effect of sunflower on physiological and biochemical processes during germination of mustard seeds (Sinapis alba L. cv. Nakielska). To exclude the involvement of osmotic stress in seed reaction to phytotoxic compounds, we compared the effect of 10% (w/v) water extract from sunflower (Helianthus annuus L. cv. Ogrodowy) leaves and 28.4% (w/v) polyethylene glycol (PEG) 8000 solution characterized by an equal Ψ = −1 MPa. We evaluated (1) the amount of hydrogen peroxide (H2O2); (2) activities of antioxidant enzymes: superoxide dismutase, catalase, and glutathione reductase; (3) membrane permeability; and (4) level of malondialdehyde (MDA). Both, sunflower compounds and PEG solutions inhibited mustard seed germination, but only phytotoxins caused an increase in the cell membrane permeability, MDA level, H2O2 concentration, and alterations in activities of antioxidant enzymes. Our results demonstrate that despite the activation of the antioxidant system by sunflower phytotoxins, reactive oxygen species accumulation caused cellular damage, which resulted in the decrease of germinability and gradual loss of seed vigor. It seems that the negative effect of sunflower on germination of mustard seeds is mostly because of its toxicity and not to its contribution to osmotic potential.  相似文献   
102.
103.
104.
Genistein, a phytoestrogen, has been demonstrated to have a bone-sparing and antiresorptive effect. Genistein can inhibit the osteoclast formation of receptor activator of nuclear factor-κB ligand (RANKL)-induced RAW 264.7 cells by preventing the translocation of nuclear factor-κB (NF-κB), a redox-sensitive factor, to the nucleus. Therefore, the suppressive effect of genistein on the reactive oxygen species (ROS) level during osteoclast differentiation and the mechanism associated with the control of ROS levels by genistein were investigated. The cellular antioxidant capacity and inhibitory effect of genistein were confirmed. The translation and activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1), as well as the disruption of the mitochondrial electron transport chain system were obviously suppressed by genistein in a dose-dependent manner. The induction of phase II antioxidant enzymes, such as superoxide dismutase 1 (SOD1) and heme oxygenase-1 (HO-1), was enhanced by genistein. In addition, the translational induction of nuclear factor erythroid 2-related factor 2 (Nrf2) was notably increased by genistein. These results provide that the inhibitory effects of genistein on RANKL-stimulated osteoclast differentiation is likely to be attributed to the control of ROS generation through suppressing the translation and activation of Nox1 and the disruption of the mitochondrial electron transport chain system, as well as ROS scavenging through the Nrf2-mediated induction of phase II antioxidant enzymes, such as SOD1 and HO-1.  相似文献   
105.
Apigenin-7-glycoside (AP7Glu) with multiple biological activities is a flavonoid that is currently prescribed to treat inflammatory diseases such as upper respiratory infections. Recently, several studies have shown that its anti-inflammatory activities have been strongly linked to the inhibition of secretion of pro-inflammatory proteins, such as inducible nitric oxide synthase (iNOs) and cyclooxygenase-2 (COX-2) induced through phosphorylation nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK) pathways. Additionally, inflammation, which can decrease the activities of antioxidative enzymes (AOEs) is also observed in these studies. At the same time, flavonoids are reported to promote the activities of heme oxygenase-1 (HO-1) decreased by LPS. The purpose of this study was to assess these theories in a series of experiments on the suppressive effects of AP7Glu based on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and acute lung injury in mice in vivo. After six hours of lipopolysaccharide (LPS) stimulation, pulmonary pathological, myeloperoxidase (MPO) activity, total polymorphonuclear leukocytes (PMN) cells, cytokines in bronchoalveolar lavage fluid (BALF) and AOEs, are all affected and changed. Meanwhile, our data revealed that AP7Glu not only did significantly inhibit the LPS-enhanced inflammatory activity in lung, but also exhibited anti-inflammatory effect through the MAPK and inhibitor NF-κB (IκB) pathways.  相似文献   
106.
The implementation of increasingly stringent standards for the discharge of wastes into the environment has necessitated the need for the development of alternative waste treatment processes. A review of research directed toward developing enzymatic treatment systems for solid, liquid and hazardous wastes is presented. A large number of enzymes from a variety of different plants and microorganisms have been reported to play an important role in an array of waste treatment applications. Enzymes can act on specific recalcitrant pollutants to remove them by precipitation or transformation to other products. They also can change the characteristics of a given waste to render it more amenable to treatment or aid in converting waste material to value-added products. Before the full potential of enzymes may be realized, it is recommended that a number of issues be addressed in future research endeavors including the identification and characterization of reaction by-products, the disposal of reaction products and reduction of the cost of enzymatic treatment. © 1997 SCI.  相似文献   
107.
MicroRNAs (miRNAs) have crucial functions in many cellular processes, such as differentiation, proliferation and apoptosis; aberrant expression of miRNAs has been linked to human diseases, including cancer. Tools that allow specific and efficient knockdown of miRNAs would be of immense importance for exploring miRNA function. Zebrafish serves as an excellent vertebrate model system to understand the functions of miRNAs involved in a variety of biological processes. We designed and employed a strategy based on locked nucleic acid enzymes (LNAzymes) for in vivo knockdown of miRNA in zebrafish embryos. We demonstrate that LNAzyme can efficiently knockdown miRNAs with minimal toxicity to the zebrafish embryos.  相似文献   
108.
Aqueous two-phase system (ATPS) was used for simultaneous purification of glycyrrhizic acid (GA) and liquiritin (LQ) from crude extract of Chinese licorice root. It was revealed that 87% GA and 94% LQ were retrieved in the ATPS top phase, under the optimum conditions of 25% (w/w) ethanol, 30% (w/w) K2HPO4 and 4% (w/w) loading sample at 10–40°C. Compared with crude extract, the ATPS top-phase extract exhibited the highest antioxidative activity, but no tyrosinase inhibitory effect. Whereas, the ATPS bottom-phase extract was proved to be effective ABTS radical scavenger and tyrosinase inhibitor, suggesting the potency of the alcohol-salt ATPS purification for the different medicinal purposes.  相似文献   
109.
Directed evolution of stereo‐ and regioselective enzymes as catalysts in organic chemistry and biotechnology constitutes a complementary alternative to selective transition‐metal catalysts and organocatalysts. Saturation mutagenesis at sites lining the binding pocket has emerged as a key method in this endeavor, but it suffers from amino acid bias, which reduces the quality of the library at the DNA level and, thus, at the protein level. Chemical solid‐phase gene synthesis for library construction offers a solution to this fundamental problem, and the Sloning and Twist platforms are two possible options. This concept article analyzes these approaches and compares them to traditional PCR‐based saturation mutagenesis; the superior commercial Twist technique shows almost no bias.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号