首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   94篇
  国内免费   15篇
综合类   17篇
化学工业   147篇
金属工艺   2篇
机械仪表   1篇
建筑科学   9篇
矿业工程   5篇
能源动力   36篇
轻工业   40篇
水利工程   7篇
石油天然气   6篇
无线电   2篇
一般工业技术   24篇
冶金工业   11篇
原子能技术   2篇
  2024年   8篇
  2023年   21篇
  2022年   50篇
  2021年   38篇
  2020年   55篇
  2019年   34篇
  2018年   30篇
  2017年   14篇
  2016年   21篇
  2015年   9篇
  2014年   13篇
  2013年   5篇
  2012年   9篇
  2011年   1篇
  2010年   1篇
排序方式: 共有309条查询结果,搜索用时 0 毫秒
31.
稻壳生物炭对整治烟田土壤养分及烟叶产质量的影响   总被引:7,自引:0,他引:7  
为探究生物炭施用对整治烟田土壤改良及烟叶产质量的影响,在皖南的烟田整治区,研究了稻壳生物炭不同施用量对土壤养分及烟叶产质量的作用效果。结果表明,稻壳生物炭施用可以降低土壤容重,提高土壤pH及有机质、碱解氮、有效磷和速效钾等养分含量。生物炭可以促进烟株生长发育,对烟叶外观产生一定影响,特别是油分指标随生物炭用量增加呈下降趋势。生物炭施用一定程度上降低烟叶总糖及还原糖含量,提高总氮、烟碱及钾含量,其中T2(生物炭7.5 t/hm2)处理烟叶化学成分协调性较好。同时烟叶感官质量随生物炭施用量增加呈现先增加(不变)后降低趋势,感官评吸得分表现为T1=CK> T2> T3。烤烟的产量产值均随着生物炭施用量增加而增加,其中T3(生物炭15 t/hm2)处理最高,产量达1729.2 kg/hm2,产值达到37516.8 元/hm2,较CK分别提高43.51%和43.48%。但上等烟比例随生物炭用量增加呈先增加后降低趋势。综合土壤养分及烟叶的产质量结果,在皖南烟田整治区,稻壳生物炭的施用量不宜超过7.5t/hm2。  相似文献   
32.
Biochar, unwashed and washed with a solution of Triton and hydrogen peroxide, was wet drum granulated using molasses binder solutions. Unwashed biochar was very hydrophobic and granulation proceeded through forming liquid marbles and layering. Washing reduced the hydrophobicity of the biochar. The effectiveness of the wash depended on the biochar source; it significantly reduced the hydrophobicity of biochar from woodchips and moderately reduced the hydrophobicity of biochar from flower digestate. Therefore, washed biochar from woodchips was granulated using a hydrophilic mechanism, while washed biochar from digestate was granulated according to a combination mechanism of liquid marbles collapsing and then coalescing. The change in granulation mechanism produced stronger and denser granules with higher yields of granules in the 1–4 mm optimal size range. Washing and then granulating biochar created a product that could be further tailored for optimal soil amendment.  相似文献   
33.
A promising biochar as solid adsorbent for CO2 uptake was prepared by the catalytic pyrolysis of coconut shell in moderate-temperature ionic liquid (IL). Then, it was characterized by means of SEM, EDS, BPEA, BET, NLDFT, FTIR, and TG-DSC, and a mechanism interpretation of the porous biochar formation was conducted. In addition, the adsorption characteristics of CO2 on the as-prepared biochar, such as adsorption capacity, adsorption potential, isosteric heat, and static selectivity at different adsorption temperatures and pressures, were systematically evaluated. The results indicated that the as-prepared biochar exhibited an adequate CO2 adsorption with a capacity of 4.5 mmol/g at 273 K and 100 kPa. Then, a significant number of slit-like pores were revealed to exist on the as-prepared biochar with a peak pore size between a range of 0.6 nm-2 nm. The porous structure formation was ascribed to the release of carbon-, hydrogen-, oxygen-, sulphur-, and nitrogen-containing compounds during biochar preparation. Meanwhile, both the adsorption potential and isosteric heat of the CO2 uptake under the tested conditions decreased with an increase in the adsorption capacity, which ranged from 33 kJ/mol-21 kJ/mol and 23 kJ/mol-7 kJ/mol, respectively. Therefore, the isosteric heat could be considered as a piecewise function of adsorption capacity. In addition, the molar ratios of CO2 over N2 adsorbed under the tested conditions were above 11 and were accompanied by molar ratio peaks of 26 at 273 K and 19 at 298 K, respectively. Moreover, an interesting phenomenon occurred: the static adsorptive selectivity of CO2 over N2 first increased and then decreased and there was an increase in the adsorption pressure at the tested adsorption temperatures.  相似文献   
34.
The study explored the oxygen-enriched combustion behavior of torrefied waste wood pellets in a fluidized bed. For biomass torrefaction, three indexes, namely energy yield index (EY), proximate analysis-based index (PA), and effective comprehensive combustion index (Smix), are used to present the optimal conditions from each viewpoint. Four operating parameters, incorporating torrefaction temperature, residence time and nitrogen flow rate, were taken into consideration in this study. The signal-to-noise ratios of each parameter were evaluated to examine the influencing impact of different factors. The optimal results were employed in the investigation of biochar combustion using a laboratory-scale fluidized-bed reactor with oxygen lancing. Oxygen was injected into different zones of the fluidized bed to investigate its influence on combustion efficiency. The parameters of biochar combustion optimization include torrefied materials, fluidized-bed temperature, oxygen inlet position, and oxygen concentration. The total fluidized-bed efficiency and the volatile combustion ratio were evaluated.  相似文献   
35.
Dried pomelo peel waste was employed as raw material and heated separately via three different thermal treatment methods which are vacuum tube furnace (700?°C, 300?~?1 × 10?5?Pa), muffle furnace (300?°C in air) and hydrothermal treatment in an oven (200?°C, sealed). Therefore, three kinds of amorphous porous carbon were obtained and named as S1, S2 and S3, respectively. XRD, SEM, EDS, specific surface area and pore size analyzer have been used to characterize the morphology, composition and porosity of the biochar materials which show 3 dimensional porous framework morphologies, but only S1 possesses highest specific surface area (464.96m2/g) among the 3 biochar materials. The electrochemical properties were characterized via galvanostatic charge/discharge method, cyclic voltammetry (CV) and AC impedance. After 100 cycles of charge and discharge process, the specific capacity of the biochar S1 maintained 297.0mAh/g. The specific capacity of S2 was 103.3mAh/g and the specific capacity of S3 is 106.0mAh/g. Thus, S1 exhibits a high specific surface area and excellent electrochemical performance which may have potential application due to low cost of the biochar prepared from pomelo peel wastes.  相似文献   
36.
重金属污染具有高毒性、持久存留和生物积累等特性, 严重危害人体健康和生态安全。本研究通过氯化钙对玉米芯残渣和膨润土混合物进行碱改性, 在无氧条件下高温煅烧制备了一种碱改性生物炭-膨润土复合物(CaO-Bent-CB)。该复合物的比表面积高, 达到441.1 m2/g, 明显高于直接煅烧制备的生物碳(132.7 m2/g)和碱改性生物炭(177.2 m2/g)。进一步评价了该复合物对水中铅离子吸附性能, 结果表明在水中铅离子浓度为120 mg/L, 膨润土与玉米芯残渣质量比为1:5, 用量为1 g/L条件下, 吸附6 h后铅离子去除率达98%, 吸附量为109.6 mg/g, 均高于生物炭(13.4 mg/g)、膨润土(72.9 mg/g)和碱改性生物炭(86.9 mg/g)。此外, 采用CaO-Bent-CB对铅离子污染土壤进行稳定化处理, 当土壤中铅离子浓度为2200 mg/kg, CaO-Bent-CB用量为土壤干重的8%时, 在pH=3.2的硫酸-硝酸浸提液中浸出12 h, 酸浸出铅离子浓度低至4.5 mg/L, 低于危险废物鉴别标准值(5 mg/L)。上述研究结果表明这种生物炭-膨润土共改性复合物在重金属污染水体和土壤修复中具有很好的应用前景。  相似文献   
37.
为了更好地利用大型水生植物,防止二次污染,在分析大型水生植物传统资源化利用途径的基础上,提出了大型水生植物资源化利用的新途径,即利用大型水生植物厌氧发酵生产有机酸和制备生物质炭,用于污水处理的脱氮除磷,以利于碳素循环。  相似文献   
38.
艾丹  王博 《精细化工》2022,39(2):217-224,301
利用球磨机械力化学技术制备的改性生物炭具有成本低、产能高、绿色无溶剂等优点,近年来受到研究人员的广泛关注.球磨改性增加生物炭表面官能团、扩大其比表面积以及提高吸附容量,使球磨改性生物炭对环境污染物具有优异的去除性能,在环境修复领域应用前景广阔.介绍了球磨改性生物炭的制备与理化性质,总结了球磨改性生物炭在环境修复中对污染物质去除的最新进展,同时明确其对各类污染物的去除机制.在此基础上,探讨球磨改性生物炭在环境修复中目前存在的问题与限制因素,从明确技术和经济可行性、扩展材料应用范围以及厘清潜在生态环境风险等方面提出未来研究方向.  相似文献   
39.
A novel magnetic biochar was prepared via pyrolysis method and modification. The influence factors of contact time, initial concentration, temperature, and pH on the adsorption were investigated. The experimental results exhibited that the adsorption ability of methyl salicylate onto biochar was higher than that of phenol and para-chlorophenol under the same condition, which may be owing to the effect of hydrogen bonding, hydrophobicity, and π–π interaction. The maximum adsorption capacities of phenol, para-chlorophenol and methyl salicylate were 62.6, 131.6, and 169.7 mg/g at 298 K, respectively. This magnetic biochar exhibited high reusability (retained 82.1% after five cycles) and sharply magnetic performance (21.4emu/g).  相似文献   
40.
Three types of magnetic biochars (MBC1, MBC2, and MBC3) were synthesized from biochar using NaBH4 as a reducing agent of Fe(II) to Fe(0) to remove copper(II) ions from different wastewaters. Based on the research it was found that removal of copper(II) ions by MBC1 occurs with a yield of 99.8% for the concentration 50 mg/dm3 and decreases to 71.7% at 200 mg/dm3. The maximum pH sorption was found at pH 5. The highest correlation coefficient values (65.55 mg/g) were obtained for the Langmuir isotherm model. Application of 0.5 mol/dm3 HNO3 as a desorbing agent gives the highest desorption percentage 98.92%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号